Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 3
220
Views
1
CrossRef citations to date
0
Altmetric
Articles

Reassessment of a bond correction method for in situ ultrasonic interferometry on elastic wave velocity measurement under high pressure and high temperature

ORCID Icon, , &
Pages 278-293 | Received 08 Feb 2022, Accepted 09 Aug 2022, Published online: 18 Aug 2022

References

  • Higo Y, Kono Y, Inoue T, et al. A system for measuring elastic wave velocity under high pressure and high temperature using a combination of ultrasonic measurement and the multi-anvil apparatus at SPring-8. J Synchrotron Radiat. 2009;16:762–768.
  • Kono Y, Irifune T, Higo Y, et al. P-V-T relation of MgO derived by simultaneous elastic wave velocity and in situ X-ray measurements: a new pressure scale for the mantle transition region. Phys Earth Planet Int. 2010;183:196–211.
  • Li B, Kung J, Liebermann RC. Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Phys Earth Planet Int. 2004;143–144:559–574.
  • McSkimin HJ. Use of high frequency ultrasound for determining the elastic moduli of small specimen. IRE Trans Ultrason Eng. 1957;5:25–43.
  • Davies GF, O’Connell RJ. Transducer and bond phase shifts in ultrasonics, and their effects on measured pressure derivatives of elastic moduli. In: Manghnani M, Akimoto S, editor. High pressure research: application in geophysics. New York, NY: Elsevier Academic Press; 1977. p. 533–562.
  • Jackson I, Niesler H, Weidner DJ. Explicit correction of ultrasonically determined elastic wave velocities for transducer-bond phase shifts. J Geophys Res. 1981;86B:3736–3748.
  • Niesler H, Jackson I. Pressure derivatives of elastic wave velocities from ultrasonic interferometric measurements on jacketed polycrystals. J Acoust Soc Am. 1989;86:1573–1585.
  • Li B, Zhang J. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Phys Earth Planet Int. 2005;151:143–154.
  • Chantel J, Frost DJ, McCammon CA, et al. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys Res Lett. 2012;39:L19307. DOI:10.1029/2012GL053075.
  • Higo Y, Irifune T, Funakoshi K. Simultaneous high-pressure high-temperature elastic velocity measurement system up to 27 GPa and 1873K using ultrasonic and synchrotron X-ray techniques. Rev Sci Instrum. 2018;89:014501.
  • Niesler H. A new technique for the measurement of elastic wave velocities on jacketed polycrystals at high pressure [master’s thesis]. Canberra: Australian National University; 1986.
  • Spetzler HA, Chen G, Whitehead S, et al. A new ultrasonic interferometer for the determination of equation of state parameters of sub-millimeter single crystals. PAGEOPH. 1993;141:341–377.
  • Li B, Jackson I, Gasparik T, et al. Elastic wave velocity measurement in multi-anvil apparatus to 10 GPa using ultrasonic interferometry. Phys Earth Planet Int. 1996;98:79–91.
  • Tsuchiya T. First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res. 2003;108:2462. DOI:10.1029/2003JB002446.
  • Ohno I, Yamamoto S, Anderson OL, et al. Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method. J Phys Chem Solids. 1986;47:1103–1108.
  • Wang W, Wu Z. Elasticity of corundum at high pressures and temperatures: implications for pyrope decomposition and Al-content effect on elastic properties of bridgmanite. J Geophys Res. 2018;123:1201–1216.
  • Hearmon RFS. The elastic constants of crystals and other anisotropic materials. In: Hellwege KH, Hellwege AM, editor. Landolt-Börnstein tables, III/18. Berlin: Springer-Verlag; 1984. p. 1–154.
  • Fan D, Fu S, Yang J, et al. Elasticity of single-crystal periclase at high pressure and temperature: The effect of iron on the elasticity and seismic parameters of ferropericlase in the lower mantle. Am Mineral. 2019;104:262–275.
  • Hearmon RFS. The elastic constants of crystals and other anisotropic materials. In: Hellwege KH, Hellwege AM, editor. Landolt-Börnstein tables, III/11. Berlin: Springer-Verlag; 1979. p. 1–244.
  • Matsui M, Higo Y, Okamoto Y, et al. Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: application as a primary pressure standard. Am Mineral. 2012;97:1670–1675.
  • Cook RK. Variation of elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements. J Acoust Soc Am. 1957;29:445–449.
  • Kawai K, Tsuchiya T. Small shear modulus of cubic CaSiO3 perovskite. Geophys Res Lett. 2015;42:2718–2726.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phy Rev B. 1964;136:864–871.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phy Rev A. 1965;140:1133–1138.
  • Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phy Rev B. 1981;23:5048–5079.
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phy Rev B. 1990;41:7892–7895.
  • Dziewonski AM, Anderson DL. Preliminary reference Earth model. Phys Earth Planet Int. 1981;25:297–356.
  • Masters G, Laske G, Bolton H, et al. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In: Karato S, Forte AM, Liebermann RC, editor. Earth’s deep interior mineral physics and tomography from the atomic to the global scale. Washington, DC: AGU; 2000. p. 63–87.
  • Pamato MG, Kurnosov A, Ballaran TB, et al. Single crystal elasticity of majoritic garnets: stagnant slabs and thermal anomalies at the base of the transition zone. Earth Planet Sci Lett. 2016;451:114–124.
  • Wentzcovitch RM, Wu Z, Carrier P. First principles quasiharmonic thermoelasticity of mantle minerals. Rev Mineral Geochem. 2010;71:99–128.
  • Fei Y, Van Orman J, Li J, et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res. 2004;109:B02305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.