Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 4
123
Views
0
CrossRef citations to date
0
Altmetric
Articles

Sound velocity anomalies of limestone at high pressure and implications for the mantle wedge

, , , , , ORCID Icon, , , & show all
Pages 336-348 | Received 11 Jun 2022, Accepted 06 Nov 2022, Published online: 12 Nov 2022

References

  • Dasgupta R, Hirschmann MM. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett. 2010;298(1–2):1–13.
  • Plank T, Manning CE. Subducting carbon. Nature [Internet]. 2019;574(7778):343–352.
  • Dutkiewicz A, Müller MD, Cannon J, et al. Sequestration and subduction of deep-sea carbonate in the global ocean since the early cretaceous. Geology. 2019;47(1):91–94.
  • Kelemen PB, Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci U S A. 2015;112(30):E3997–E4006.
  • Dalton JA, Wood BJ. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett. 1993;119(4):511–525.
  • Frezzotti ML, Selverstone J, Sharp ZD, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci. 2011;4(10):703–706.
  • Ague JJ, Nicolescu S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci. 2014;7(5):355–360.
  • Kang JT, Qi YH, Li K, et al. Calcium isotope compositions of arc magmas: implications for Ca and carbonate recycling in subduction zones. Geochim Cosmochim Acta [Internet]. 2021;306:1–19.
  • Okamoto A, Oyanagi R, Yoshida K, et al. Rupture of wet mantle wedge by self-promoting carbonation. Commun Earth Environ. 2021;2(1):1–10.
  • Ducea MN, Saleeby J, Morrison J, et al. Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: an example from California. Am Mineral. 2005;90(5–6):864–870.
  • Liu Y, He D, Gao C, et al. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Sci Rep. 2015;5:1–11.
  • Sieber MJ, Hermann J, Yaxley GM. An experimental investigation of C–O–H fluid-driven carbonation of serpentinites under forearc conditions. Earth Planet Sci Lett. 2018;496:178–188.
  • Sieber MJ, Yaxley GM, Hermann J. Investigation of fluid-driven carbonation of a hydrated, forearc mantle wedge using serpentinite cores in high-pressure experiments. J Petrol. 2020;61(3):egaa035.
  • Merlini M, Hanfland M, Crichton WA. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. Earth Planet Sci Lett. 2012;333–334:265–271.
  • Pippinger T, Miletich R, Merlini M, et al. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys Chem Miner. 2015;42(1):29–43.
  • Lobanov SS, Dong X, Martirosyan NS, et al. Raman spectroscopy and X-ray diffraction of sp 3 CaCO3 at lower mantle pressures. Phys Rev B. 2017;96(10):15–17.
  • Huang D, Liu H, Hou MQ, et al. Elastic properties of CaCO3 high pressure phases from first principles. Chinese Phys B. 2017;26(8):1–8.
  • Li X, Zhang Z, Lin JF, et al. New high-pressure phase of CaCO3 at the topmost lower mantle: implication for the deep-mantle carbon transportation. Geophys Res Lett. 2018;45(3):1355–1360.
  • Hou M, Zhang Q, Tao R, et al. Temperature-induced amorphization in CaCO3 at high pressure and implications for recycled CaCO3 in subduction zones. Nat Commun. 2019;10(1):1–8.
  • Marcondes ML, Justo JF, Assali LVC. Carbonates at high pressures: possible carriers for deep carbon reservoirs in the earth’s lower mantle. Phys Rev B. 2016;94(10):1–9.
  • Bayarjargal L, Fruhner CJ, Schrodt N, et al. CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Phys Earth Planet Inter. 2018;281:(November 2017) 31–45.
  • Santos SSM, Marcondes ML, Justo JF, et al. Calcium carbonate at high pressures and high temperatures: a first-principles investigation. Phys Earth Planet Inter. 2020;299:106327–7.
  • Wang C-Y. Velocity of compressional waves in limestones, marbles, and a single crystal of calcite to 20 kilobars. J Geophys Res. 1966;71(14):3543–3547.
  • Grady DE, Hollenbach RE, Schuler KW. Compression wave studies on calcite rock. J Geophys Res. 1978;83(B6):2839–2849.
  • Belkofsi R, Adjaoud O, Belabbas I. Pressure induced phase transitions and elastic properties of CaCO3 polymorphs: a density functional theory study. Modell Simul Mater Sci Eng 2018;26(6):065004.
  • Zhao CS, Li HP, Chen PF, et al. Sound velocities across calcite phase transitions by Brillouin scattering spectroscopy. Am Mineral. 2019;104(3):418–424.
  • Stewart EM, Ague JJ. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat Commun [Internet]. 2020;11(1):1–8.
  • Chen C, Förster MW, Foley SF, et al. Massive carbon storage in convergent margins initiated by subduction of limestone. Nat Commun. 2021;12(1):4463.
  • Lee WJ, Wyllie PJ. Liquid immiscibility in the join NaAlsi3O8-CaCO3 to 2.5 GPa and the origin of calciocarbonatite magmas. J Petrol. 1996;37:1125–1152.
  • Abers GA. Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Phys Earth Planet Inter. 2005;149(1-2 SPEC. ISS.):7–29.
  • Wiens DA, Conder JA, Faul UH. The seismic structure and dynamics of the mantle wedge. Annu Rev Earth Planet Sci. 2008;36:421–455.
  • Nakajima J, Matsuzawa T, Hasegawa A, et al. Seismic imaging of arc magma and fluids under the central part of northeastern Japan. Tectonophysics. 2001;341(1–4):1–17.
  • Salah MK, Seno T. Imaging of Vp, Vs, and Poisson’s ratio anomalies beneath Kyushu, southwest Japan: implications for volcanism and forearc mantle wedge serpentinization. J Asian Earth Sci. 2008;31(4–6):404–428.
  • Takei Y. Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J Geophys Res. 2002;107(B2):ECV 6-1–ECV 6-12.
  • Bezacier L, Reynard B, Bass JD, et al. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet Sci Lett. 2010;289(1–2):198–208.
  • Afonso JC, Schutt DL. The effects of polybaric partial melting on density and seismic velocities of mantle restites. Lithos. 2012;134–135:289–303.
  • Mookherjee M, Keppler H, Manning CE. Aluminum speciation in aqueous fluids at deep crustal pressure and temperature. Geochim Cosmochim Acta. 2014;133:128–141.
  • Shcheka SS, Wiedenbeck M, Frost DJ, et al. Carbon solubility in mantle minerals. Earth Planet Sci Lett. 2006;245(3–4):730–742.
  • Lv M, Dorfman SM, Badro J, et al. Reversal of carbonate-silicate cation exchange in cold slabs in earth’s lower mantle. Nat Commun [Internet]. 2021;12(1):1712.
  • Graf DL. Crystallographic tables for the rhombohedral carbonates. Am Mineral. 1961;46:1283–1316.
  • Wang Z, Liu Y, Bi Y, et al. Hydrostatic pressure and temperature calibration based on phase diagram of bismuth. High Press Res. 2012;32(2):167–175.
  • Cook & Richard K. Variation of elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements. J Acoust Soc Am. 1957;29(4):445–449.
  • Kerley GI. Equations of state for calcite minerals. I. Theoretical model for dry calcium carbonate. High Press Res. 1989;2(1):29–47.
  • Hagiya K, Matsui M, Kimura Y, et al. The crystal data and stability of calcite III at high pressures based on single crystal X ray experiments. J Mineral Petrol Sci. 2005;100(1):31–36.
  • Singh AK, Kennedy GC. Compression of calcite to 40 KB. J Geophys Res. 1974;79(17):2615–2622.
  • Redfern SAT, Angel RJ. High-pressure behaviour and equation of state of calcite, CaCO3. Contrib to Mineral Petrol. 1999;134(1):102–106.
  • Fiquet G, Guyot F, Itie JP. High-pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3. Am Mineral. 1994;79(1–2):15–23.
  • Carpenter MA, Salje EKH. Elastic anomalies in minerals due to structural phase transitions. Eur J Mineral. 1998;10(4):693–812.
  • Carpenter MA, Hemley RJ, Mao H. High-pressure elasticity of stishovite and the P42/mnm Pnnm phase transition. J Geophys Res. 2000;105:807–816.
  • Ullrich A, Schranz W, Miletich R. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study. Phys Chem Miner. 2009;36(10):545–555.
  • Brown JM, Angel RJ, Ross NL. Elasticity of plagioclase fledpsars. J Geophys Res Solid Earth. 2016;121(2):663–675.
  • Yuan X, Gao C, Gao J. An in-situ study of the phase transitions among CaCO3 high-pressure polymorphs. Mineral Mag. 2019;83(02):191–197.
  • Merlini M, Crichton WA, Chantel J, et al. Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3 at high pressure. Mineral Mag. 2014;78(2):225–233.
  • Liu L-G, Mernagh TP. Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral. 1990;75(7–8):801–806.
  • Koch-Müller M, Jahn S, Birkholz N, et al. Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Phys Chem Miner. 2016;43(8):545–561.
  • Schaebitz M, Wirth R, Janssen C, et al. First evidence of CaCO3-III and CaCO3-IIIb high-pressure polymorphs of calcite: authigenically formed in near surface sediments. Am Mineral. 2015;100(5–6):1230–1235.
  • Gavryushkin PN, Belonoshko AB, Sagatov N, et al. Metastable structures of CaCO3 and their role in transformation of calcite to aragonite and post aragonite. Cryst Growth Des. 2021;21(1):65–74.
  • Mookherjee M, Mainprice D, Maheshwari K, et al. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi3O8). Sci Rep. 2016;6(October):1–10.
  • Stixrude L, Lithgow-Bertelloni C. Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J Geophys Res Solid Earth. 2005;110(3):1–16.
  • Li B, Neuville DR. Elasticity of diopside to 8 GPa and 1073 K and implications for the upper mantle. Phys Earth Planet Inter [Internet]. 2010;183(3–4)):398–403.
  • Gwanmesia GD, Zhang J, Darling K, et al. Elasticity of polycrystalline pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C. Phys Earth Planet Inter. 2006;155(3–4):179–190.
  • Liu W, Kung J, Li B. Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophys Res Lett. 2005;32(16):1–4.
  • Qian W, Wang W, Zou F, et al. Elasticity of orthoenstatite at high pressure and temperature: implications for the origin of Low VP/VS zones in the mantle wedge. Geophys Res Lett. 2018;45(2):665–673.
  • Pastén-Araya F, Potin B, Azúa K, et al. Along-Dip segmentation of the slip behavior and rheology of the Copiapó Ridge subducted in north-central Chile. Geophys Res Lett. 2022;49(4):e2021GL095471.
  • Zheng Y, Lay T. Low Vp/Vs ratios in the crust and upper mantle beneath the Sea of Okhotsk inferred from teleseismic pMP, sMP, and sMS underside reflections from the Moho. J Geophys Res Solid Earth. 2006;111(1):1–13.
  • Rossi G, Abers GA, Rondenay S, et al. Unusual mantle poisson’s ratio, subduction, and crustal structure in central Alaska. J Geophys Res Solid Earth. 2006;111(9):1–16.
  • Watanabe T. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophys Res Lett. 1993;20(24):2933–2936.
  • Hacker BR, Abers GA. Subduction factory 5: unusually low Poisson’s ratios in subduction zones from elastic anisotropy of peridotite. J Geophys Res Solid Earth. 2012;117(6):1–15.
  • Hyndman RD, Peacock SM. Serpentinization of the forearc mantle. Earth Planet Sci Lett. 2003;212(3–4):417–432.
  • Liu C, Zheng H, Wang D. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature. High Press Res [Internet]. 2017;37(4):545–557.
  • Davey FJ, Ristau J. Fore-arc mantle wedge seismicity under northeast New Zealand. Tectonophysics. 2011;509(3–4):272–279.
  • Dinc AN, Rabbel W, Flueh ER, et al. Mantle wedge hydration in Nicaragua from local earthquake tomography. Geophys J Int. 2011;186(1):99–112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.