100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The high power laser facility at beamline ID24-ED at the ESRF

, , , , , , , , , , , , , , , , , , & show all
Received 04 Apr 2024, Accepted 14 May 2024, Published online: 27 May 2024

References

  • Pascarelli S, Mathon O, Mairs T, et al. The time-resolved and extreme-conditions XAS (TEXAS) facility at the European synchrotron radiation facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24. J Synchrotron Radiat. 2016 Jan;23(1):353–368. doi:10.1107/S160057751501783X
  • Mathon O, Occelli F, Lescoute E, et al. High pressure dynamic xas studies using an energy-dispersive spectrometer. High Press Res. 2016;36(3):404–418. doi:10.1080/08957959.2016.1199694
  • Torchio R, Boccato S, Cerantola V, et al. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure. High Press Res. 2016;36(3):293–302. doi:10.1080/08957959.2016.1198904
  • Rosa A, Garbarino G, Rodrigues J, et al. New opportunities for high-pressure science at the extremely brilliant source of the esrf and the energy scanning x-ray absorption beamlines id24-dcm and bm23. High Press Res. 2024.
  • Morard G, Hernandez JA, Guarguaglini M, et al. In situ x-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proc Nati Acad Sci. 2020;117(22):11981–11986. doi:10.1073/pnas.1920470117
  • Murillo MS. Strongly coupled plasma physics and high energy-density matter. Phys Plasmas. 2004 05;11(5):2964–2971. doi:10.1063/1.1652853
  • Remington BA, Drake RP, Ryutov DD. Experimental astrophysics with high power lasers and z pinches. Rev Mod Phys. 2006 Aug;78:755–807. doi:10.1103/RevModPhys.78.755
  • Dittrich TR, Haan SW, Marinak MM, et al. Review of indirect-drive ignition design options for the national ignition facility. Phys Plasmas. 1999 05;6(5):2164–2170. doi:10.1063/1.873467
  • Chan JW, Huser T, Risbud S, et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt Lett. 2001 Nov;26(21):1726–1728. doi:10.1364/OL.26.001726
  • Millot M, Coppari F, Rygg JR, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature. 2019;569(7755):251–255. doi:10.1038/s41586-019-1114-6
  • Zhang S, Whitley HD, Ogitsu T. Phase transformation in boron under shock compression. Solid State Sci. 2020;108:106376. doi:10.1016/j.solidstatesciences.2020.106376
  • Brygoo S, Loubeyre P, Millot M, et al. Evidence of hydrogen-helium immiscibility at Jupiter-interior conditions. Nature. 2021;593(7860):517–521. doi:10.1038/s41586-021-03516-0
  • Hernandez JA, Bethkenhagen M, Ninet S, et al. Melting curve of superionic ammonia at planetary interior conditions. Nat Phys. 2023;19(9):1280–1285. doi:10.1038/s41567-023-02074-8
  • Kraus D, Vorberger J, Pak A, et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat Astron. 2017;1(9):606–611. doi:10.1038/s41550-017-0219-9
  • Pépin CM, Sollier A, Marizy A, et al. Kinetics and structural changes in dynamically compressed bismuth. Phys Rev B. 2019 Aug;100:060101. doi:10.1103/PhysRevB.100.060101
  • Mulliken A, Boyce M. Mechanics of the rate-dependent elasticplastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct. 2006;43(5):1331–1356. doi:10.1016/j.ijsolstr.2005.04.016
  • Gleason AE, Bolme CA, Lee HJ, et al. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat Commun. 2015 Sep;6(1):8191. doi:10.1038/ncomms9191
  • Briggs R, Torchio R, Sollier A, et al. Observation of the shock-induced β-Sn to b.c.t.-Sn transition using time-resolved X-ray diffraction. J Synchrotron Radiat. 2019;26(1):96–101. doi:10.1107/S1600577518015059
  • Gorman MG, Coleman AL, Briggs R, et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth. Sci Rep. 2018 Nov;8(1):16927. doi:10.1038/s41598-018-35260-3
  • Nagler B, Arnold B, Bouchard G, et al. The matter in extreme conditions instrument at the linac coherent light source. J Synchrotron Radiat. 2015 May;22(3):520–525. doi:10.1107/S1600577515004865
  • Glenzer SH, Fletcher LB, Galtier E, et al. Matter under extreme conditions experiments at the linac coherent light source. J Phys B: At Mol Opt Phys. 2016 apr;49(9):092001. doi:10.1088/0953-4075/49/9/092001
  • Inubushi Y, Yabuuchi T, Togashi T, et al. Development of an experimental platform for combinative use of an xfel and a high-power nanosecond laser. Appl Sci. 2020;10(7):2224. doi:10.3390/app10072224
  • Wang X, Rigg P, Sethian J, et al. The laser shock station in the dynamic compression sector. I Rev Sci Instrum. 2019 05;90(5):053901. doi:10.1063/1.5088367
  • Sévelin-Radiguet N, Torchio R, Berruyer G, et al. Towards a dynamic compression facility at the ESRF. J Synchrotron Radiat. 2022 Jan;29(1):167–179. doi:10.1107/S1600577521011632
  • Benuzzi-Mounaix A, Dorchies F, Recoules V, et al. Electronic structure investigation of highly compressed aluminum with k edge absorption spectroscopy. Phys Rev Lett. 2011;107(16):165006. doi:10.1103/PhysRevLett.107.165006
  • Denoeud A, Benuzzi-Mounaix A, Ravasio A, et al. Metallization of warm dense SiO2 studied by xanes spectroscopy. Phys Rev Lett. 2014;113(11):116404. doi:10.1103/PhysRevLett.113.116404
  • Dorchies F, Lévy A, Goyon C, et al. Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast x-ray absorption near-edge spectroscopy. Phys Rev Lett. 2011;107(24):245006. doi:10.1103/PhysRevLett.107.245006
  • Duffy TS, Smith RF. Ultra-high pressure dynamic compression of geological materials. Front Earth Sci. 2019;7:23. doi:10.3389/feart.2019.00023
  • Katagiri K, Ozaki N, Murayama D, et al. Hugoniot equation-of-state and structure of laser-shocked polyimide C22H10N2O5. Phys Rev B. 2022;105(5):054103. doi:10.1103/PhysRevB.105.054103
  • Smith R, Eggert J, Jeanloz R, et al. Ramp compression of diamond to five terapascals. Nature. 2014;511(7509):330–333. doi:10.1038/nature13526
  • Sio H, Krygier A, Braun DG, et al. Extended x-ray absorption fine structure of dynamically-compressed copper up to 1 terapascal. Nat Commun. 2023 Nov;14(1):7046. doi:10.1038/s41467-023-42684-7
  • Millot M, Hamel S, Rygg JR, et al. Experimental evidence for superionic water ice using shock compression. Nat Phys. 2018;14(3):297–302. doi:10.1038/s41567-017-0017-4
  • Guarguaglini M, Soubiran F, Hernandez JA, et al. Electrical conductivity of warm dense silica from double-shock experiments. Nat Commun. 2021;12(1):840. doi:10.1038/s41467-021-21046-1
  • Headspith J, Groves J, Luke PN, et al. First experimental data from xh, a fine pitch germanium microstrip detector for energy dispersive exafs (ede). In: 2007 IEEE Nuclear Science Symposium Conference Record; Oct; 2007; Vol. 4. p. 2421–2428.
  • Borri M, Cohen C, Groves J, et al. Prototyping experience with ge micro-strip sensors for edxas experiments. Nucl Instrum Methods Phys Res Sec A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021;1017:165800. doi:10.1016/j.nima.2021.165800
  • Borri M, Cohen C, Fox O, et al. Characterisation of ge micro-strip sensors with a micro-focused X-ray beam. Nucl Instrum Methods Phys Res Sec A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021;988:164932. doi:10.1016/j.nima.2020.164932
  • Ping Y, Coppari F, Hicks DG, et al. Solid iron compressed up to 560 GPa. Phys Rev Lett. 2013 Aug;111:065501. doi:10.1103/PhysRevLett.111.065501
  • Das P, Klug JA, Sinclair N, et al. Single-pulse (100 ps) extended x-ray absorption fine structure capability at the dynamic compression sector. Rev Sci Instrum. 2020;91(8):085115. doi:10.1063/5.0003427
  • Harmand M, Cammarata M, Chollet M, et al. Single-shot x-ray absorption spectroscopy at x-ray free electron lasers. Sci Rep. 2023 Oct;13(1):18203. doi:10.1038/s41598-023-44196-2
  • Lehmberg R, Obenschain S. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt Commun. 1983;46(1):27–31. doi:10.1016/0030-4018(83)90024-X
  • Deiter C, Pakendorf T, Meents A, et al. Design report for standard sample holder. European Union; 2016.
  • Manuel A, Millot M, Seppala L, et al. Upgrades to the visar-streaked optical pyrometer (sop) system on nif. In: Target Diagnostics Physics and Engineering for Inertial Confinement Fusion IV; Vol. 9591; SPIE; 2015. p. 25–32.
  • Celliers PM, Millot M. Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences. Rev Sci Instrum. 2023 01;94(1):011101. doi:10.1063/5.0123439
  • Celliers P, Bradley D, Collins G, et al. Line-imaging velocimeter for shock diagnostics at the omega laser facility. Rev Sci Instrum. 2004;75(11):4916–4929. doi:10.1063/1.1807008
  • Zel'Dovich YB, Raizer YP. Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation; 2002.
  • Ramis R, Schmalz R, Meyer-ter Vehn J. Multi computer code for one-dimensional multigroup radiation hydrodynamics. Comput Phys Commun. 1988;49(3):475–505. doi:10.1016/0010-4655(88)90008-2
  • Colombier JP, Combis P, Bonneau F, et al. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys Rev B. 2005;71(16):165406. doi:10.1103/PhysRevB.71.165406
  • Goujon G, Broquet A, Janvier N. Refurbishment of the ESRF Accelerator Synchronization System Using White Rabbit. In: Proc. of International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS'17), Barcelona, Spain, 8-13 October 2017; Jan.; Geneva, Switzerland. JACoW; 2018. p. 224–228; (International Conference on Accelerator and Large Experimental Control Systems; 16). doi:10.18429/JACoW-ICALEPCS2017-TUCPL01
  • Rigg P, Knudson M, Scharff R, et al. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility. J Appl Phys. 2014;116(3):033515. doi:10.1063/1.4890714
  • Marsh SP. Lasl shock hugoniot data. Vol. University of California Press; 1980.
  • McCoy CA, Knudson MD, Root S. Absolute measurement of the hugoniot and sound velocity of liquid copper at multimegabar pressures. Phys Rev B. 2017;96(17):174109. doi:10.1103/PhysRevB.96.174109
  • McCoy C, Gregor M, Polsin D, et al. Shock-wave equation-of-state measurements in fused silica up to 1600 GPa. J Appl Phys. 2016;119(21):215901. doi:10.1063/1.4952975
  • Isambert A, De Resseguier T, Gloter A, et al. Magnetite-like nanocrystals formed by laser-driven shocks in siderite. Earth Planet Sci Lett. 2006;243(3-4):820–827. doi:10.1016/j.epsl.2006.01.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.