77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a laser-driven shock compression platform for time-resolved XRD experiments at the ID09 beamline of the European Synchrotron Radiation Facility

, , , , &
Received 20 Mar 2024, Accepted 22 May 2024, Published online: 31 May 2024

References

  • Pascarelli S, McMahon M, Pépin C, et al. Materials under extreme conditions using large X-ray facilities. Nat Rev Methods Primers. 2023;3:82. doi: 10.1038/s43586-023-00264-5
  • Drake RP. High-energy-density physics. Foundation of inertial fusion and experimental astrophysics. 2nd ed. Berlin: Springer Cham; 2018.
  • Steinhauser MO, Hiermaier S. A review of computational methods in materials science: examples from shock-wave and polymer physics. Int J Mol Sci. 2009;10:5135–5216. doi: 10.3390/ijms10125135
  • Wood MA, Cherukara MJ, Antillon E, et al. Molecular dynamics simulations of shock loading of materials: a review and tutorial. Rev Comput Chem. 2017;30:43.
  • Hamilton BW, Sakano MN, Li C, et al. Chemistry under shock conditions. Annu Rev Mater Res. 2021;51:101–130. doi: 10.1146/matsci.2021.51.issue-1
  • Wen P, Tao G, Spearot DE, et al. Molecular dynamics simulation of the shock response of materials: A tutorial. J Appl Phys. 2022;131:051101. doi: 10.1063/5.0076266
  • Batani D. Matter in extreme conditions produced by lasers. Eur Phys Lett. 2016;114:65001. doi: 10.1209/0295-5075/114/65001
  • Ichiyanagi K, Nakamura KG. Structural dynamics of materials under shock compression investigated with synchrotron radiation. Metals. 2016;6:17. doi: 10.3390/met6010017
  • Takagi S, Ichiyanagi K, Kyono A, et al. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an nd:glass laser system. J Synchrotron Rad. 2020;27:371–377. doi: 10.1107/S1600577519016084
  • Sévelin-Radiguet N, Torchio R, Berruyer G, et al. Towards a dynamic compression facility at the ESRF. J Synchrotron Rad. 2022;29:167–179. doi: 10.1107/S1600577521011632
  • Broege D, Fochs S, Brent G, et al. The dynamic compression sector laser: a 100-J UV laser for dynamic compression research. Rev Sci Instrum. 2019;90:053001. doi: 10.1063/1.5088049
  • Wang X, Rigg P, Sethian J, et al. The laser shock station in the dynamic compression sector. I. Rev Sci Instrum. 2019;90:053901. doi: 10.1063/1.5088367
  • Glenzer SH, Fletcher LB, Galtier E, et al. Matter under extreme conditions experiments at the linac coherent light source. J Phys B: At Mol Opt Phys. 2016;49:092001. doi: 10.1088/0953-4075/49/9/092001
  • Brown SB, Hashim A, Gleason A, et al. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the linac coherent light source. Rev Sci Instrum. 2017;88:053514. doi: 10.1063/1.4997756
  • Yabuuchi T, Kon A, Inubushi Y, et al. An experimental platform using high-power, high-intensity optical lasers with the hard X-ray free-electron laser at SACLA. J Synchrotron Rad. 2019;26:585–594. doi: 10.1107/S1600577519000882
  • Inubushi Y, Yabuuchi T, Togashi T, et al. Development of an experimental platform for combinative use of an XFEL and a high-Power nanosecond laser. Appl Sci. 2020;10:2224. doi: 10.3390/app10072224
  • Mason P, Banerjee S, Smith J, et al. Development of a 100 J, 10 hz laser for compression experiments at the high energy density instrument at the European XFEL. High Power Laser Sci Eng. 2018;6:e65. doi: 10.1017/hpl.2018.56
  • Zastrau U, Appel K, Baehtz C, et al. The high energy density scientific instrument at the European XFEL. J Synchrotron Rad. 2021;28:1393–1416. doi: 10.1107/S1600577521007335
  • Tschentscher T, Suortti P. Experiments with very high energy synchrotron radiation. J Synchrotron Rad. 1998;5:286–292. doi: 10.1107/S0909049597014775
  • d'Almeida T, Michiel MD, Kaiser M, et al. Time-resolved x-ray diffraction measurements on cdS shocked along the c axis. J Appl Phys. 2002;92:1715–1717. doi: 10.1063/1.1491601
  • d'Almeida T, Kaiser M, Michiel MD, et al. Time-resolved X-ray diffraction on laser-shocked crystals. Proc SPIE. 2002;4780:176. doi: 10.1117/12.469723
  • Liss KD, Kaiser M, et al. Time-resolved X-ray diffraction study of laser-induced shock and acoustic waves in single crystalline silicon. J Appl Phys. 2009;106:044914. doi: 10.1063/1.3204968
  • Wulff M, Plech A, Eybert L, et al. The realization of sub-nanosecond pump and probe experiments at the ESRF. Farad. Disc. 2002;122:13–26. doi: 10.1039/b202740m
  • Briggs R, Torchio R, Sollier A, et al. Observation of the shock-induced β-Sn to b.c.t.-Sn transition using time-resolved X-ray diffraction. J Synchrotron Rad. 2019;26:96–101. doi: 10.1107/S1600577518015059
  • Pépin CM, Sollier A, Marizy A, et al. Kinetics and structural changes in dynamically compressed bismuth. Phys Rev B. 2019;100:060101(R). doi: 10.1103/PhysRevB.100.060101
  • Espeso JI, Cloetens P, Baruchel J. Conserving the coherence and uniformity of third-Generation synchrotron radiation beams: the case of ID19, a 'Long' beamline at the ESRF. J Synchrotron Rad. 1998;5:1243–1249. doi: 10.1107/S0909049598002271
  • Weitkamp T, Tafforeau P, Boller E, et al. Status and evolution of the ESRF beamline ID19. AIP Conf Proc. 2010;1221:33. doi: 10.1063/1.3399253
  • Olbinado M, Just X, Gelet JL, et al. MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation. Opt Express. 2017;25:13857. doi: 10.1364/OE.25.013857
  • Olbinado M, Cantelli V, Mathon O, et al. Ultra high-speed X-ray imaging of laser-driven shock compression using synchrotron light. J Phys D Appl Phys. 2018;51:055601. doi: 10.1088/1361-6463/aaa2f2
  • Pascarelli S, Mathon O, Mairs T, et al. The time-resolved and extreme-conditions XAS (TEXAS) facility at the European synchrotron radiation facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24. J Synchrotron Rad. 2016;23:353–368. doi: 10.1107/S160057751501783X
  • Torchio R, Occelli F, Mathon O, et al. Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked fe. Sci Rep. 2016;6:26402. doi: 10.1038/srep26402
  • Pépin CM, Torchio R, Occelli F, et al. White-line evolution in shocked solid ta evidenced by synchrotron x-ray absorption spectroscopy. Phys Rev B. 2020;102:144102. doi: 10.1103/PhysRevB.102.144102
  • Géral T, Lescoute E, Jodar B, et al. GCLT: a versatile high power laser facility for high-energy-density (HED) physics applications. AIP Conf Proc. to be published.
  • Jankowski M, Belova V, Chushkin Y, et al. The complex systems and biomedical sciences group at the ESRF: current status and new opportunities after extremely brilliant source upgrade. Nucl Instrum Methods Phys Res B. 2023;538:164–172. doi: 10.1016/j.nimb.2023.02.034
  • Levantino M, Kong Q, Cammarata M, et al. Structural dynamics probed by X-ray pulses from synchrotrons and XFELs. Comptes Rendus Phys. 2021;22:75–94. doi: 10.5802/crphys.85
  • Smolentsev G, Milne C, Guda A, et al. Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nat Commun. 2020;11:2131. doi: 10.1038/s41467-020-15998-z
  • Ki H, Kim T, Moon J, et al. Photoactivation of triosmium dodecacarbonyl at 400 nm probed with time-resolved X-ray liquidography. Chem Commun. 2022;58:7380–7383. doi: 10.1039/D2CC02438A
  • Lee Y, Ki H, Im D, et al. Cerium photocatalyst in action: structural dynamics in the presence of substrate visualized via time-resolved x-ray liquidography. J Am Chem Soc. 2023;145(43):23715–23726. doi: 10.1021/jacs.3c08166
  • Orädd F, Ravishankar H, Goodman J, et al. Tracking the ATP-binding response in adenylate kinase in real time. Sci Adv. 2021;7:eabi5514. doi: 10.1126/sciadv.abi5514
  • Sarabi D, Ostojic L, Bosman R, et al. Modeling difference x-ray scattering observations from an integral membrane protein within a detergent micelle. Struct Dyn. 2022;9:054102. doi: 10.1063/4.0000157
  • Mariette C, Lorenc M, Cailleau H, et al. Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nat Commun. 2021;12:1239. doi: 10.1038/s41467-021-21316-y
  • Volte A, Mariette C, Bertoni R, et al. Dynamical limits for the molecular switching in a photoexcited material revealed by X-ray diffraction. Commun Phys. 2022;5:1. doi: 10.1038/s42005-022-00940-0
  • Plech A, Ziefuß A, Levantino M, et al. Low efficiency of laser heating of gold particles at the plasmon resonance: an X-ray calorimetry study. ACS Photonics. 2022;9:2981–2990. doi: 10.1021/acsphotonics.2c00588
  • Cammarata M, Eybert L, Ewald F, et al. Chopper system for time resolved experiments with synchrotron radiation. Rev Sci Instrum. 2009;80(1):015101. doi: 10.1063/1.3036983
  • Goujon G, Broquet A, Janvier N. Refurbishment of the ESRF Accelerator Synchronization System Using White Rabbit. In: Proc. of International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS'17), Barcelona, Spain, 8–13 Oct 2017; 2018. p. 224–228.
  • BLISS [https://bliss.gitlab-pages.esrf.fr/bliss/master/]; 2024.
  • Barker LM, Hollenbach RE. Shock-Wave studies of PMMA, fused silica, and sapphire. J Appl Phys. 1970;41:4208–4226. doi: 10.1063/1.1658439
  • Barker LM, Hollenbach RE. Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys. 1972;43:4669–4675. doi: 10.1063/1.1660986
  • Hemsing WF. Velocity sensing interferometer (VISAR) modification. Rev Sci Instrum. 1979;50:73–78. doi: 10.1063/1.1135672
  • Jensen BJ, Holtkamp DB, Rigg PA, et al. Accuracy limits and window corrections for photon Doppler velocimetry. J Appl Phys. 2007;101:013523. doi: 10.1063/1.2407290
  • Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry. J Appl Phys. 1990;68(2):775–784. doi: 10.1063/1.346783
  • Sollier A, Berthe L, Peyre P, et al. Laser–matter interaction in laser shock processing. In: Miyamoto I, Kobayashi KF, Sugioka K, et al., editors. First International Symposium on High-Power Laser Macroprocessing; (Proc. of SPIE; Vol. 4831); 2003. p. 463–467.
  • Ichiyanagi K, Adachi S, Nozawa S, et al. Shock-induced lattice deformation of cdS single crystal by nanosecond time-resolved laue diffraction. Appl Phys Lett. 2007;91(23):231918. doi: 10.1063/1.2819617
  • Hu J, Ichiyanagi K, Takahashi H, et al. Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved x-ray diffraction. J Appl Phys. 2012;111(5):053526. doi: 10.1063/1.3692080
  • Hu J, Ichiyanagi K, Doki T, et al. Complex structural dynamics of bismuth under laser-driven compression. Appl Phys Lett. 2013;103(16):161904. doi: 10.1063/1.4825276
  • Berthe L, Fabbro R, Peyre P, et al. Shock waves from a water-confined laser-generated plasma. J Appl Phys. 1997;82(6):2826–2832. doi: 10.1063/1.366113
  • Gorman MG, Ali SJ, Celliers PM, et al. Measurement of shock roughness due to phase plate speckle imprinting relevant for x-ray diffraction experiments on 3rd and 4th generation light sources. J Appl Phys. 2022;132(17):175902. doi: 10.1063/5.0117905
  • Bardy S, Aubert B, Bergara T, et al. Development of a numerical code for laser-induced shock waves applications. Opt Laser Technol. 2020;124:105983. doi: 10.1016/j.optlastec.2019.105983
  • Scius-Bertrand M, Videau L, Rondepierre A, et al. Laser induced plasma characterization in direct and water confined regimes: new advances in experimental studies and numerical modelling. J Phys D: Appl Phys. 2020;54(5):055204. doi: 10.1088/1361-6463/abc040
  • Dewaele A, Loubeyre P, Occelli F, et al. Quasihydrostatic equation of state of iron above 2 mbar. Phys Rev Lett. 2006;97:215504. doi: 10.1103/PhysRevLett.97.215504
  • Righi G, Briggs R, Deluigi OR, et al. A spall and diffraction study of nanosecond pressure release across the iron ϵ-α phase boundary. Acta Mater. 2023;257:119148. doi: 10.1016/j.actamat.2023.119148
  • Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65–71. doi: 10.1107/S0021889869006558
  • Pawley GS. Unit-cell refinement from powder diffraction scans. J Appl Crystallogr. 1981;14(6):357–361. doi: 10.1107/S0021889881009618
  • Johnson W, Mehl R. Reaction kinetics in processes of nucleation and growth. Trans Metal Soc. 1939;135:416–442.
  • Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7(12):1103–1112. doi: 10.1063/1.1750380
  • Kolmogorov A. On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Math. 1937;1:355–359.
  • Razorenov SV, Kanel GI, Fortov VE. Iron at high negative pressures. JETP Lett. 2004;80(5):348–350. doi: 10.1134/1.1825120
  • Razorenov SV, Kanel GI, Savinykh AS, et al. Large tensions and strength of iron in different structure states. AIP Conf Proc. 2006;845:650–653. doi: 10.1063/1.2263406
  • Lescoute E, De Rességuier T, Chevalier JM, et al. Ejection of spalled layers from laser shock-loaded metals. J Appl Phys. 2010;108(9):093510. doi: 10.1063/1.3500317
  • de Rességuier T, Lescoute E, Loison D. Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded iron. Phys Rev B. 2012;86:214102. doi: 10.1103/PhysRevB.86.214102
  • Ashitkov SI, Komarov PS, Agranat MB, et al. Achievement of ultimate values of the bulk and shear strengths of iron irradiated by femtosecond laser pulses. JETP Lett. 2013;98(7):384–388. doi: 10.1134/S0021364013200022
  • Wang J, Smith RF, Eggert JH, et al. Ramp compression of iron to 273 GPa. J Appl Phys. 2013;114(2):023513. doi: 10.1063/1.4813091
  • Kanel GI, Razorenov SV, Garkushin GV, et al. Deformation resistance and fracture of iron over a wide strain rate range. Phys Solid State. 2014;56(8):1569–1573. doi: 10.1134/S1063783414080113
  • Zaretsky EB, Kanel GI. Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures. J Appl Phys. 2015;117(19):195901. doi: 10.1063/1.4921356
  • Shu H, Huang X, Pan H, et al. Plastic behavior of steel and iron in high strain rate regime. Int J Fract. 2017;206(1):81–93. doi: 10.1007/s10704-017-0202-6
  • Thomas SA, Hawkins MC, Matthes MK, et al. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel. J Appl Phys. 2018;123(17):175902. doi: 10.1063/1.5019484
  • Righi G, Ruestes CJ, Stan CV, et al. Towards the ultimate strength of iron: spalling through laser shock. Acta Mater. 2021;215:117072. doi: 10.1016/j.actamat.2021.117072
  • Brown JM, Fritz JN, Hixson RS. Hugoniot data for iron. J Appl Phys. 2000;88(9):5496–5498. doi: 10.1063/1.1319320
  • Bancroft D, Peterson EL, Minshall S. Polymorphism of iron at high pressure. J Appl Phys. 1956;27(3):291–298. doi: 10.1063/1.1722359
  • Barker LM, Hollenbach RE. Shock wave study of the α⇄ϵ phase transition in iron. J Appl Phys. 1974;45(11):4872–4887. doi: 10.1063/1.1663148
  • Boettger JC, Wallace DC. Metastability and dynamics of the shock-induced phase transition in iron. Phys Rev B. 1997;55:2840–2849. doi: 10.1103/PhysRevB.55.2840
  • Jensen BJ, Gray IGT, Hixson RS. Direct measurements of the α−ϵ transition stress and kinetics for shocked iron. J Appl Phys. 2009;105(10):103502. doi: 10.1063/1.3110188
  • Salamat A, Briggs R, Bouvier P, et al. High-pressure structural transformations of sn up to 138 GPa: angle-dispersive synchrotron x-ray diffraction study. Phys Rev B. 2013;88:104104. doi: 10.1103/PhysRevB.88.104104
  • Fréville R. Transitions de phase et microstructures induites dans les métaux en conditions extrêmes : fer et étain. Science des matériaux [cond-mat.mtrl-sci]. Français: Université Paris-Saclay; 2023.
  • Freville R, Dewaele A, Guignot N, et al. High-pressure–high-temperature phase diagram of tin. Phys Rev B. 2024;109:104116. doi: 10.1103/PhysRevB.109.104116
  • Deffrennes G, Faure P, Bottin F, et al. Tin (Sn) at high pressure: review, X-ray diffraction, DFT calculations, and gibbs energy modeling. J Alloys Compd. 2022;919:165675. doi: 10.1016/j.jallcom.2022.165675
  • Rehn DA, Greeff CW, Burakovsky L, et al. Multiphase tin equation of state using density functional theory. Phys Rev B. 2021;103:184102. doi: 10.1103/PhysRevB.103.184102
  • Cox GA, Christie MA. Fitting of a multiphase equation of state with swarm intelligence. J Phys: Cond Matter. 2015;27(40):405201.
  • Hu J, Zhou X, Tan H, et al. Successive phase transitions of tin under shock compression. Appl Phys Lett. 2008;92(11):111905. doi: 10.1063/1.2898891
  • Liu Y, Hui M, Shen L. Temperature evolution associated with phase transition from quasi static to dynamic loading. Meccanica. 2021;56(8):2039–2051. doi: 10.1007/s11012-021-01336-0
  • Elias P, Chapron P, Laurent B. Detection of melting in release for a shock-loaded tin sample using the reflectivity measurement method. Opt Commun. 1988;66(2-3):100–106. doi: 10.1016/0030-4018(88)90042-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.