111
Views
1
CrossRef citations to date
0
Altmetric
Research Article

New opportunities for high pressure X-ray absorption spectroscopy at ID24-DCM and BM23 with the Extremely Brilliant Source of the ESRF

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 28 Mar 2024, Accepted 01 Jun 2024, Published online: 17 Jun 2024

References

  • Raimondi P, Benabderrahmane C, Berkvens P, et al. The Extremely Brilliant Source storage ring of the European Synchrotron Radiation Facility. Commun Phys. 2023;6(1):82. doi: 10.1038/s42005-023-01195-z
  • Mezouar M, Perrillat JP, Garbarino G, et al. Toward fully automated high pressure beamlines: recent developments at beamline ID27, ESRF. Acta Crystallogr A. 2008;64:C610–C610. doi: 10.1107/S0108767308080380
  • Pascarelli S, McMahon M, Pépin C, et al. Materials under extreme conditions using large X-ray facilities. Nat Rev Methods Primers. 2023;3(1):82. doi: 10.1038/s43586-023-00264-5
  • Cerantola V, Rosa AD, Konopkova Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers. J Phys: Condens Matter. 2021;33(27):274003. doi: 10.1088/1361-648X/abfd50
  • Rosa AD, Kupenko I, Hernandez JA, et al. New opportunities for earth science at the Extremely Brilliant Source of the European Synchrotron Radiation Facility. Synchrotron Radiat News. 2023;35(6):1–9. doi: 10.1080/08940886.2022.2159711.
  • Dewaele A, Worth N, Pickard CJ, et al. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure. Nat Chem. 2016;8(8):784–790. doi: 10.1038/nchem.2528
  • Purans J, Menushenkov AP, Besedin SP, et al. Local electronic structure rearrangements and strong anharmonicity in YH3 under pressures up to 180 GPa. Nat Commun. 2021;12(1):1765. doi: 10.1038/s41467-021-21991-x
  • Farsang S, Louvel M, Rosa AD, et al. Effect of salinity, pressure and temperature on the solubility of smithsonite (ZnCO3) and Zn complexation in crustal and upper mantle hydrothermal fluids. Chem Geol. 2021;578:120320. doi: 10.1016/j.chemgeo.2021.120320
  • Rosa AD, Bouhifd MA, Morard G, et al. Krypton storage capacity of the Earth's lower mantle. Earth Planet Sci Lett. 2020;532:116032. doi: 10.1016/j.epsl.2019.116032
  • Rosa AD, Pohlenz J, de Grouchy C, et al. In situ characterization of liquid network structures at high pressure and temperature using X-ray absorption spectroscopy coupled with the Paris-Edinburgh press. High Pressure Res. 2016;36(3):332–347. doi: 10.1080/08957959.2016.1199693
  • Rosa AD, Merkulova M, Garbarino G, et al. Amorphous boron composite gaskets for in situ high-pressure and high-temperature studies. High Pressure Res. 2016;36(4):564–574. doi: 10.1080/08957959.2016.1245297
  • Rosa AD, Mathon O, Torchio R, et al. Nano-polycrystalline diamond anvils: key devices for XAS at extreme conditions: their use, scientific impact, present status and future needs. High Pressure Res. 2019;40(1):65–81. doi: 10.1080/08957959.2019.1700978
  • Rosa AD, Dewaele A, Garbarino G, et al. X-ray study of krypton and xenon under pressure reveals the mechanism of martensitic transformations. Acta Crystallogr A. 2021;77:C645–C645. doi: 10.1107/S0108767321090504
  • Rosa AD, Dewaele A, Garbarino G, et al. Martensitic fcc-hcp transformation pathway in solid krypton and xenon and its effect on their equations of state. Phys Rev B. 2022;105(14):144103. doi: 10.1103/PhysRevB.105.144103
  • Riva AF, Rosa AD, Clavel C, et al. Heat distribution in Paris–Edinburgh press assemblies through finite element simulations. High Pressure Res. 2018;38(3):303–324. doi: 10.1080/08957959.2018.1485020
  • Pohlenz J, Rosa AD, Mathon O, et al. Structural controls of CO2 on Y, La and Sr incorporation in sodium-rich silicate - carbonate melts by in-situ high P-T EXAFS. Chem Geol. 2018;486:1–15. doi: 10.1016/j.chemgeo.2017.12.023
  • Krstulović MR AD, Biedermann N, Irifune T, et al. Structural changes in aluminosilicate glasses up to 164 GPa and the role of alkali, alkaline earth cations and alumina in the densification mechanism. Chem Geol. 2021;560:119980. doi: 10.1016/j.chemgeo.2020.119980
  • Krstulovic M, Rosa AD, Biedermann N, et al. Ge coordination in NaAlGe3O8 glass upon compression to 131 GPa. Phys Rev B. 2020;101(21). doi: 10.1103/PhysRevB.101.214103
  • Fornasini P, Grisenti R, Irifune T, et al. Bond compressibility and bond Gruneisen parameters of CdTe. J Phys: Condens Matter. 2018;30(24):245402. doi: 10.1088/1361-648X/aac188
  • Crepisson C, Sanloup C, Cormier L, et al. Kr environment in feldspathic glass and melt: A high pressure, high temperature X-ray absorption study. Chem Geol. 2018;493:525–531. doi: 10.1016/j.chemgeo.2018.07.008
  • Rodrigues JE, Rosa AD, López-Sánchez J, et al. EXAFS evidence for the spin–phonon coupling in the monoclinic PrNiO3 nickelate perovskite [10.1039/D2TC03063B]. J Mat Chem C. 2023;11(2):462–471.
  • Sans JA, Monteseguro V, Garbarino G, et al. Stability and nature of the volume collapse of ϵ-Fe2O3 under extreme conditions. Nat Commun. 2018;9(1):4554. doi: 10.1038/s41467-018-06966-9
  • Monteseguro V, Barreda-Argüeso JA, Ruiz-Fuertes J, et al. Crystal-field mediated electronic transitions of EuS up to 35 GPa. Sci Rep. 2022;12(1):1217. doi: 10.1038/s41598-022-05321-9
  • Krstulović M, Rosa AD, Sanchez DF, et al. Effect of temperature on the densification of silicate melts to lower Earth's mantle conditions. Phys Earth Planet Inter. 2022;323:106823. doi: 10.1016/j.pepi.2021.106823
  • Mathon O, Beteva A, Borrel J, et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J Synchrotron Radiat. 2015;22:1548–1554. doi: 10.1107/S1600577515017786
  • Yildirim C, Micoulaut M, Boolchand P, et al. Universal amorphous-amorphous transition in GexSe100−x glasses under pressure. Sci Rep. 2016;6(1):27317. doi: 10.1038/srep27317
  • Antonowicz J, Pietnoczka A, Evangelakis GA, et al. Atomic-level mechanism of elastic deformation in the Zr-Cu metallic glass. Phys Rev B. 2016;93(14):144115. doi: 10.1103/PhysRevB.93.144115
  • Mathon O, Baudelet F, Itie J-P, et al. XMCD under pressure at the Fe K edge on the energy-dispersive beamline of the ESRF. J Synchrotron Radiat. 2004;11(5):423–427. doi: 10.1107/S0909049504018862
  • Pascarelli S, Mathon O, Mairs T, et al. The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24. J Synchrotron Radiat. 2016;23:353–368. doi: 10.1107/S160057751501783x
  • Mijit E, Rodrigues JEFS, Tchoudinov G, et al. EXAFS investigations on the pressure induced local structural changes of GeSe2 glass under different hydrostatic conditions. J Phys: Condens Matter. 2023;35(26):264001. doi: 10.1088/1361-648X/acc8b1
  • Boccato S, Torchio R, Kantor I, et al. The melting curve of nickel up to 100 GPa explored by XAS. J Geophys Res: Solid Earth. 2017;122(12):9921–9930. doi: 10.1002/2017JB014807
  • Mijit E, Durandurdu M, Rodrigues JEFS, et al. Structural and electronic transformations of GeSe2 glass under high pressures studied by X-ray absorption spectroscopy. Proc Natl Acad Sci. 2024;121(14):e2318978121. doi: 10.1073/pnas.2318978121
  • Rosa AD, Garbarino G, Briggs R, et al. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa. Phys Rev B. 2018;97(9):094115. doi: 10.1103/PhysRevB.97.094115
  • Torchio R, Boccato S, Miozzi F, et al. Melting Curve and Phase Relations of Fe-Ni Alloys: Implications for the Earth's Core Composition. Geophys Res Lett. 2020;47(14):e2020GL088169. doi: 10.1029/2020GL088169.
  • Boccato S, Torchio R, Anzellini S, et al. Melting properties by X-ray absorption spectroscopy: common signatures in binary Fe-C, Fe-O, Fe-S and Fe-Si systems. Sci Rep. 2020;10(1):11663. doi:10.1038/s41598-020-68244-3.
  • Morard G, Boccato S, Rosa AD, et al. Solving Controversies on the Iron Phase Diagram Under High Pressure. Geophys Res Lett. 2018;45(20):11074–11082. doi: 10.1029/2018gl079950
  • Wilke M, Schmidt C, Dubrail J, et al. Zircon solubility and zirconium complexation in H2O + Na2O + SiO2 +/- Al2O3 fluids at high pressure and temperature. Earth Planet Sci Lett. 2013;373:242–243. doi: 10.1016/j.epsl.2013.04.010
  • Ishimatsu N, Matsumoto K, Maruyama H, et al. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J Synchrotron Radiat. 2012;19(5):768–772. doi: 10.1107/S0909049512026088
  • Kuramochi K, Ishimatsu N, Sakai T, et al. An application of NPD to double-stage diamond anvil cells: XAS spectra of rhenium metal under high pressures above 300 GPa. High Pressure Res. 2020;40(1):119–129. doi: 10.1080/08957959.2019.1702174
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421(6925):806. doi: 10.1038/421806b
  • Hernandez JA, Sévelin-Radiguet N, Torchio R, et al. The high power laser facility at beamline ID24-ED at the ESRF. High Pressure Res. 2024: 1–28. doi: 10.1080/08957959.2024.2356530
  • Meneghini C, Mobilio S, Lusvarghi L, et al. The structure of ZrO2 phases and devitrification processes in a Ca-Zr-Si-O-based glass ceramic: a combined a-XRD and XAS study. J Appl Crystallogr. 2004;37(6):890–900. doi: 10.1107/S0021889804022307
  • Dewaele A, Loubeyre P, Occelli F, et al. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat Commun. 2018;9(1):2913. doi: 10.1038/s41467-018-05294-2
  • Letoullec R, Pinceaux JP, Loubeyre P. The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Res. 1988;1(1):77–90. doi: 10.1080/08957958808202482
  • Ishimatsu N, Yokoyama K, Onimaru T, et al. Pressure-Induced Collapse of the Guest Eu Off-Centering in Type-I Clathrate Eu8Ga16Ge30. J Phys Soc Jpn. 2019;88(11):114601. doi: 10.7566/JPSJ.88.114601
  • Farsang S, Louvel M, Zhao C, et al. Deep carbon cycle constrained by carbonate solubility. Nat Commun. 2021;12(1):4311. doi: 10.1038/s41467-021-24533-7
  • Dewaele A, Denoual C, Anzellini S, et al. Mechanism of the alpha-epsilon phase transformation in iron. Phys Rev B. 2015;91(17):174105. doi: 10.1103/PhysRevB.91.174105
  • Fréville R, Dewaele A, Bruzy N, et al. Comparison between mechanisms and microstructures of α − γ, γ − ϵ, and α − ϵ − α phase transitions in iron. Phys Rev B. 2023;107(10):104105. doi: 10.1103/PhysRevB.107.104105
  • Burkovsky RG, Bronwald I, Andronikova D, et al. Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure. Sci Rep. 2017;7(1):41512. doi: 10.1038/srep41512
  • Pasternak S, Aquilanti G, Pascarelli S, et al. A diamond anvil cell with resistive heating for high pressure and high temperature x-ray diffraction and absorption studies. Rev Sci Instrum. 2008;79(8):085103. doi:10.1063/1.2968199.
  • Edwards JW, Speiser R, Johnston HL. High Temperature Structure and Thermal Expansion of Some Metals as Determined by X-Ray Diffraction Data. I. Platinum, Tantalum, Niobium, and Molybdenum. J Appl Phys. 1951;22(4):424–428. doi: 10.1063/1.1699977
  • Rosa AD, Hilairet N, Ghosh S, et al. Evolution of grain sizes and orientations during phase transitions in hydrous Mg2SiO4. J Geophys Res: Solid Earth. 2016;121(10):7161–7176. doi: 10.1002/2016jb013360
  • Hammersley AP. FIT2D: a multi-purpose data reduction, analysis and visualization program. J Appl Crystallogr. 2016;49:646–652. doi: 10.1107/S1600576716000455
  • Lutterotti L, Matthies S, Wenk HR, et al. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81(2):594–600. doi: 10.1063/1.364220
  • Kantor I, Marini C, Mathon O, et al. A laser heating facility for energy-dispersive X-ray absorption spectroscopy. Rev Sci Instrum. 2018;89(1):013111. doi: 10.1063/1.5010345
  • Sahle CJ, Gerbon F, Henriquet C, et al. A compact von Hamos spectrometer for parallel X-ray Raman scattering and X-ray emission spectroscopy at ID20 of the European Synchrotron Radiation Facility. J Synchrotron Radiat. 2023;30(1):251–257. doi: 10.1107/S1600577522011171
  • Cochain B, Sanloup C, de Grouchy C, et al. Bromine speciation in hydrous silicate melts at high pressure. Chem Geol. 2015;404:18–26. doi: 10.1016/j.chemgeo.2015.03.015
  • Sakai T, Yagi T, Takeda R, et al. Conical support for double-stage diamond anvil apparatus. High Pressure Res. 2020;40(1):12–21. doi: 10.1080/08957959.2019.1691190
  • Occelli F, Farber DL, Badro J, et al. Experimental evidence for a high-pressure isostructural phase transition in osmium. Phys Rev Lett. 2004;93(9):095502. doi: 10.1103/PhysRevLett.93.095502
  • Oka K, Hirose K, Tagawa S, et al. Melting in the Fe-FeO system to 204 GPa: implications for oxygen in Earth’s core. Am Mineral. 2019;104(11):1603–1607. doi: 10.2138/am-2019-7081
  • Mezouara M, Garbarinoa G, Bauchaua S, et al. The high flux nano-X-ray diffraction, fluorescence and imaging beamline ID27 for science under extreme conditions on the ESRF Extremely Brilliant Source. High Pressure Res. 2024. doi: 10.1080/08957959.2024.2363932.
  • Elkins-Tanton LT. Magma oceans in the inner solar system. Annu Rev Earth Planet Sci. 2012;40(1):113–139. doi: 10.1146/annurev-earth-042711-105503
  • Jaisle N, Cébron D, Konôpková Z, et al. MHz free electron laser x-ray diffraction and modeling of pulsed laser heated diamond anvil cell. J Appl Phys. 2023;134(9):095904. doi:10.1063/5.0149836.
  • Ohtani E. The primodial terrestrial magma ocean and its implication for stratification of the mantle. Phys Earth Planet Inter. 1985;38(1):70–80. doi: 10.1016/0031-9201(85)90123-2
  • Holzheid A, Sylvester P, O'Neill HSC, et al. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum. Nature. 2000;406(6794):396–399. doi: 10.1038/35019050
  • Guillot B, Sator N. A computer simulation study of natural silicate melts. Part II: High pressure properties. Geochim Cosmochim Acta. 2007;71(18):4538–4556. doi: 10.1016/j.gca.2007.05.029
  • Sato T, Funamori N. High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys Rev B. 2010;82(18):184102. doi: 10.1103/PhysRevB.82.184102
  • Trave A, Tangney P, Scandolo S, et al. Pressure-induced structural changes in liquid sio2 from ab initio simulations. Phys Rev Lett. 2002;89(24):245504. doi: 10.1103/PhysRevLett.89.245504
  • Kono Y, Ohara K, Kondo NM, et al. Experimental evidence of tetrahedral symmetry breaking in SiO2 glass under pressure. Nat Commun. 2022;13(1):2292. doi: 10.1038/s41467-022-30028-w
  • Meade C, Hemley RJ, Mao HK. High-pressure x-ray diffraction of SiO2 glass. Phys Rev Lett. 1992;69(9):1387–1390. doi: 10.1103/PhysRevLett.69.1387
  • Itie JP, Polian A, Calas G, et al. Pressure-induced coordination changes in crystalline and vitreous GeO2. Phys Rev Lett. 1989;63(4):398–401. doi: 10.1103/PhysRevLett.63.398
  • Spiekermann G, Harder M, Gilmore K, et al. Persistent octahedral coordination in amorphous GeO2 up to 100 GPa by Kbeta” X-ray emission spectroscopy. Phys Rev X. 2019;9(1):011025. doi: 10.1103/PhysRevX.9.011025
  • Sahle CJ, Petitgirard S, Spiekermann G, et al. ID20 – opportunities for inelastic X-ray scattering at extreme conditions. High Press Res. 2024;1–24. doi: 10.1080/08957959.2024.2356523
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105–114. doi: 10.1038/nmat2090
  • Rodrigues JEFS, Gainza J, Serrano-Sánchez F, et al. Atomic structure and lattice dynamics of CoSb3 Skutterudite-based thermoelectrics. Chem Mater. 2022;34(3):1213–1224. doi: 10.1021/acs.chemmater.1c03747
  • Anderson OL, Isaak DG, Yamamoto S. Anharmonicity and the equation of state for Gold. J Appl Phys. 1989;65(4):1534–1543. doi: 10.1063/1.342969
  • Rodrigues JEFS, Gainza J, Serrano-Sánchez F, et al. Unveiling the structural behavior under pressure of filled M0.5Co4Sb12 (M = K, Sr, La, Ce, and Yb) thermoelectric skutterudites. Inorg Chem. 2021;60(10):7413–7421. doi: 10.1021/acs.inorgchem.1c00682
  • Miao MS, Wang XL, Brgoch J, et al. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure. J Am Chem Soc. 2015;137(44):14122–8. doi: 10.1021/jacs.5b08162
  • Khriachtchev L, Pettersson M, Runeberg N, et al. A stable argon compound. Nature. 2000;406(6798):874–876. doi: 10.1038/35022551
  • Wang K, Lu X, Brodholt JP. Diffusion of noble gases in subduction zone hydrous minerals. Geochim Cosmochim Acta. 2020;291:50–61. doi: 10.1016/j.gca.2020.07.015
  • Anderson MS, Swenson CA. Experimental equations of state for rare-gas solids. J Phys Chem Solids. 1975;36(3):145–162. doi: 10.1016/0022-3697(75)90004-9
  • Jephcoat AP. Rare-gas solids in the Earth's deep interior. Nature. 1998;393(6683):355–358. doi: 10.1038/30712
  • Romanenko AV, Rashchenko SV, Kurnosov A, et al. Single-standard method for simultaneous pressure and temperature estimation using Sm2+:SrB4O7 fluorescence. J Appl Phys. 2018;124(16):165902. doi:10.1063/1.5046144.
  • Rosa AD, Zecchi F, Condamine P, et al. The thermal equation of state of xenon: Implications for noble gas incorporation in serpentine minerals and their transport to depth. Geochimi Cosmochim Acta. 2024. (accepted).
  • Fenichel H, Serin B. Low-temperature specific heats of solid neon and solid xenon. Phys Rev. 1966;142(2):490–495. doi: 10.1103/PhysRev.142.490
  • Rehr JJ, Kas JJ, Vila FD, et al. Parameter-free calculations of x-ray spectra with FEFF9. Phys Chem Chem Phys. 2010;12:5503–5513. doi: 10.1039/B926434E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.