28
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nuclear resonance techniques for high-pressure research: example of the ID18 beamline of the European Synchrotron Radiation Facility

, , , , , , , & show all
Received 20 Mar 2024, Accepted 16 Jun 2024, Published online: 04 Jul 2024

References

  • Gerdau E, DeWaard H. Nuclear resonant scattering of synchrotron radiation. Baltzer Science Publishers; 1999.
  • Röhlsberger R. Nuclear condensed matter physics with synchrotron radiation [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. doi:10.1007/b86125
  • Rüffer R, Chumakov AI. Historical developments and future perspectives in nuclear resonance scattering. In: Yoshida Y, Langouche G, editors. Singapore: Springer Singapore; 2021. p. 1–55. doi:10.1007/978-981-15-9422-9_1
  • Rüffer R, Chumakov AI. Nuclear resonance beamline at ESRF. Hyperfine Interact. 1996;97–98:589–604. doi:10.1007/BF02150199
  • Potapkin V, Chumakov AI, Smirnov GV, et al. The 57Fe synchrotron Mössbauer source at the ESRF. J Synchrotron Radiat. 2012;19:559–569. doi:10.1107/S0909049512015579
  • Smirnov G. Synchrotron Mössbauer source of 57Fe radiation. Hyperfine Interact. 2000;125:91–112. doi:10.1023/A:1012677402777
  • Yaroslavtsev S, Chumakov AI. Synchrotron Mössbauer source: trade-off between intensity and linewidth. J Synchrotron Radiat. 2022;29:1329–1337. doi:10.1107/S1600577522009316
  • Baron AQR. Detectors for nuclear resonant scattering experiments. Hyperfine Interact. 2000;125:29–42. doi:10.1023/A:1012625418707
  • Baron AQR, Kishimoto S, Morse J, et al. Silicon avalanche photodiodes for direct detection of X-rays. J Synchrotron Radiat. 2006;13:131–142. doi:10.1107/S090904950503431X
  • Mitsui T, Hirao N, Ohishi Y, et al. Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell. J Synchrotron Radiat. 2009;16:723–729. doi:10.1107/S0909049509033615
  • Kupenko I, Dubrovinsky L, Dubrovinskaia N, et al. Portable double-sided laser-heating system for Mössbauer spectroscopy and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells. Rev Sci Instrum. 2012;83:124501. doi:10.1063/1.4772458
  • Potapkin V, McCammon C, Glazyrin K, et al. Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nat Commun. 2013;4:1427. doi:10.1038/ncomms2436
  • Cerantola V, Bykova E, Kupenko I, et al. Stability of iron-bearing carbonates in the deep Earth’s interior. Nat Commun. 2017;8:15960. doi:10.1038/ncomms15960
  • Aprilis G, Strohm C, Kupenko I, et al. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications. Rev Sci Instrum. 2017;88:084501. doi:10.1063/1.4998985
  • Serovaiskii A, Mukhina E, Dubrovinsky L, et al. Fate of hydrocarbons in iron-bearing mineral environments during subduction. Minerals. 2019;9:651. doi:10.3390/min9110651
  • Kupenko I, Aprilis G, Vasiukov DM, et al. Magnetism in cold subducting slabs at mantle transition zone depths. Nature. 2019;570:102–106. doi:10.1038/s41586-019-1254-8
  • Ferré EC, Kupenko I, Martín-Hernández F, et al. Magnetic sources in the Earth’s mantle. Nat Rev Earth Environ. 2020; doi:10.1038/s43017-020-00107-x
  • Dorfman SM, Potapkin V, Lv M, et al. Effects of composition and pressure on electronic states of iron in bridgmanite. Am Mineral. 2020;105:1030–1039. doi:10.2138/am-2020-7309
  • Aprilis G, Pakhomova A, Chariton S, et al. The Effect of Pulsed Laser Heating on the Stability of Ferropericlase at High Pressures. Minerals. 2020;10:542. doi:10.3390/min10060542
  • Meier T, Trybel F, Khandarkhaeva S, et al. Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions. Nat Commun. 2022;13:3042. doi:10.1038/s41467-022-30662-4
  • Koemets I, Wang B, Koemets E, et al. Crystal chemistry and compressibility of Fe0.5Mg0.5Al0.5Si0.5O3 and FeMg0.5Si0.5O3 silicate perovskites at pressures up to 95 GPa. Front Chem. 2023: 11. doi:10.3389/fchem.2023.1258389
  • Melai C, Boffa Ballaran T, Uenver-Thiele L, et al. Compressibilities along the magnetite–magnesioferrite solid solution. Phys Chem Miner. 2023;50:1. doi:10.1007/s00269-022-01217-2
  • McCammon CA, Glazyrin K, Kantor A, et al. Iron spin state in silicate perovskite at conditions of the Earth’s deep interior. High Press Res. 2013;33:663–672. doi:10.1080/08957959.2013.805217
  • Prescher C, Dubrovinsky L, Bykova E, et al. High Poisson’s ratio of Earth’s inner core explained by carbon alloying. Nat Geosci. 2015;8:220–223. doi:10.1038/ngeo2370
  • Prescher C, Weigel C, McCammon C, et al. Iron spin state in silicate glass at high pressure: implications for melts in the Earth's lower mantle. Earth Planet Sci Lett. 2014;385:130–136. doi:10.1016/j.epsl.2013.10.040
  • Cerantola V, McCammon C, Kupenko I, et al. High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. Am Mineral. 2015;100:2670–2681. doi:10.2138/am-2015-5319
  • Kupenko I, McCammon CA, Sinmyo R, et al. Oxidation state of the lower mantle: In situ observations of the iron electronic configuration in bridgmanite at extreme conditions. Earth Planet Sci Lett. 2015;423:78–86. doi:10.1016/j.epsl.2015.04.027
  • Dorfman SM, Badro J, Rueff J-P, et al. Composition dependence of spin transition in (Mg,Fe)SiO3 bridgmanite. Am Mineral. 2015;100:2246–2253. doi:10.2138/am-2015-5190
  • Kupenko I, Strohm C, McCammon C, et al. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells. Rev Sci Instrum. 2015;86:114501. doi:10.1063/1.4935304
  • Bykova E, Dubrovinsky L, Dubrovinskaia N, et al. Structural complexity of simple Fe2O3 at high pressures and temperatures. Nat Commun. 2016;7:10661. doi:10.1038/ncomms10661
  • Ismailova L, Bykov M, Bykova E, et al. Effect of composition on compressibility of skiagite-Fe-majorite garnet. Am Mineral. 2017;102:184–191. doi:10.2138/am-2017-5856
  • Hearne GR, Carleschi E, Sibanda WN, et al. Coexistence of site- and bond-centered electron localization in the high-pressure phase of LuFe2O4. Phys Rev B. 2016;93:105101. doi:10.1103/PhysRevB.93.105101
  • Layek S, Greenberg E, Xu W, et al. Pressure-induced spin crossover in disordered α-LiFeO2. Phys Rev B. 2016;94:125129. doi:10.1103/PhysRevB.94.125129
  • Ovsyannikov SV, Bykov M, Bykova E, et al. Pressure tuning of charge ordering in iron oxide. Nat Commun. 2018;9:4142. doi:10.1038/s41467-018-06457-x
  • Lyubutin IS, Starchikov SS, Gavriliuk AG, et al. High pressure magnetic, structural, and electronic transitions in multiferroic Ba3NbFe3Si2O14. Appl Phys Lett. 2018: 112. doi:10.1063/1.5035414
  • Hearne GR, Bhattacharjee S, Doyle BP, et al. Pressure-induced disruption of the local environment of Fe-Fe dimers in FeGa3 accompanied by metallization. Phys Rev B. 2018;98:020101. doi:10.1103/PhysRevB.98.020101
  • Baskakov AO, Ogarkova YL, Lyubutin IS, et al. Pressure-induced semiconductor-semimetal transition in Rb0.8Fe1.6S2. JETP Lett. 2019;109:536–540. doi:10.1134/S0021364019080058
  • Xu W, Dong W, Layek S, et al. Pressure-induced high-spin/low-spin disproportionated state in the Mott insulator FeBO3. Sci Rep. 2022;12:9647. doi:10.1038/s41598-022-13507-4
  • Zhandun V, Kazak N, Kupenko I, et al. Orthogonal magnetic structures of Fe4O5: representation analysis and DFT calculations. Dalt Trans. 2024: 2242–2251. doi:10.1039/d3dt03437b
  • Naumov PG, Filsinger K, Shylin SI, et al. Pressure-induced magnetic collapse and metallization of TlFe1.6Se2. Phys Rev B. 2017;96:064109. doi:10.1103/PhysRevB.96.064109
  • Adler P, Medvedev SA, Naumov PG, et al. igh-pressure magnetism of the double perovskite Sr2FeOsO6 studied by synchrotron 57Fe Mössbauer spectroscopy. Phys Rev B. 2019;99:134443. doi:10.1103/PhysRevB.99.134443
  • Kozlenko DP, Dubrovinsky LS, Kichanov SE, et al. Magnetic and electronic properties of magnetite across the high pressure anomaly. Sci Rep. 2019;9:4464. doi:10.1038/s41598-019-41184-3
  • Adler P, Medvedev SA, Valldor M, et al. Pressure-induced collapse of large-moment magnetic order and localized-toitinerant electronic transition in the host-guest compound [Cs6Cl][Fe24Se26]. Phys Rev B. 2020;101:094433. doi:10.1103/PhysRevB.101.094433
  • Lyubutin I, Starchikov S, Troyan I, et al. Pressure Induced Spin Crossover and Magnetic Properties of Multiferroic Ba3NbFe3Si2O14. Molecules. 2020;25:3808. doi:10.3390/molecules25173808
  • Adler P, Reehuis M, Stüßer N, et al. Spiral magnetism, spin flop, and pressure-induced ferromagnetism in negative charge-transfer-gap insulator Sr2FeO4. Phys Rev B. 2022;105:054417. doi:10.1103/PhysRevB.105.054417
  • Ajeesh MO, Materne P, dos Reis RD, et al. Interplay of structure and magnetism in LuFe4Ge2 tuned by hydrostatic pressure. Phys Rev B. 2023;107:125136. doi:10.1103/PhysRevB.107.125136
  • Dang N, Kozlenko DP, Lis ON, et al. High Pressure-driven magnetic disorder and structural transformation in Fe3GeTe2 : emergence of a magnetic quantum critical point. Adv Sci. 2023: 10. doi:10.1002/advs.202206842
  • Clark WP, Steinberg S, Dronskowski R, et al. High-Pressure NiAs-Type Modification of FeN. Angew Chemie Int Ed. 2017;56:7302–7306. doi:10.1002/anie.201702440
  • Bykov M, Bykova E, Aprilis G, et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat Commun. 2018;9:1–8. doi:10.1038/s41467-018-05143-2
  • Aprilis G, Kantor I, Kupenko I, et al. Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cell. J Appl Phys. 2019: 125. doi:10.1063/1.5067268
  • Collings IE, Vasiukov DM, McCammon CA, et al. Local Structure of Ferroic Iron Formates at Low Temperature and High Pressure Studied by Mössbauer Spectroscopy. J Phys Chem C. 2019;123:21676–21684. doi:10.1021/acs.jpcc.9b04749
  • Mikolasek M, Ridier K, Bessas D, et al. Phase stability of spin-crossover nanoparticles investigated by synchrotron mössbauer spectroscopy and small-angle neutron scattering. J Phys Chem Lett. 2019;10:1511–1515. doi:10.1021/acs.jpclett.9b00335
  • Shylin SI, Ksenofontov V, Naumov PG, et al. Interplay between superconductivity and magnetism in Cu-doped FeSe under pressure. J Supercond Nov Magn. 2018;31:763–769. doi:10.1007/s10948-017-4317-9
  • van der Woude F. Mössbauer effect in α-Fe2O3. Phys Status Solidi. 1966;17:417–432. doi:10.1002/pssb.19660170147
  • Klotz S, Strässle T, Hansen T. Pressure dependence of Morin transition in α-Fe2O3 hematite. Europhys Lett. 2013;104:16001. doi:10.1209/0295-5075/104/16001
  • Wortmann G. Study of magnetism in the megabar range by nuclear resonance scattering of synchrotron radiation. Sci Technol High Press - Proc AIRAPT 17. Universities Press; 2000. p. 52.
  • Mergner V, Kupenko I, Spiekermann G, et al. Sound velocities in fesi at lower mantle conditions and the origin of ultralow-velocity zones. Geophys Res Lett. 2021;48:1–11. doi:10.1029/2020GL092257
  • Troyan IA, Gavrilyuk AG, Sarkisyan VA, et al. Transition from the antiferromagnetic to a nonmagnetic state in FeBO3 under high pressure. J Exp Theor Phys Lett. 2001;74:24–27. doi:10.1134/1.1402200
  • Gavriliuk AG. High-pressure magnetic properties and P–T phase diagram of iron borate. J Exp Theor Phys. 2005;100:688. doi:10.1134/1.1926429
  • McCammon CA, Kantor I, Narygina O, et al. Stable intermediate-spin ferrous iron in lower-mantle perovskite. Nat Geosci. 2008;1:684–687. doi:10.1038/ngeo309
  • Dubrovinsky L, Glazyrin K, McCammon C, et al. Portable laser-heating system for diamond anvil cells. J Synchrotron Radiat. 2009;16:737–741. doi:10.1107/S0909049509039065
  • McCammon CA, Dubrovinsky L, Narygina O, et al. Low-spin Fe2+ in silicate perovskite and a possible layer at the base of the lower mantle. Phys Earth Planet Inter. 2010;180:215–221. doi:10.1016/j.pepi.2009.10.012
  • Kupenko I, McCammon CA, Sinmyo R, et al. Electronic spin state of Fe,Al-containing MgSiO3 perovskite at lower mantle conditions. Lithos. 2014;189:167–172. doi:10.1016/j.lithos.2013.10.022
  • Barla A, Wilhelm H, Forthaus MK, et al. Pressure-induced inhomogeneous chiral-spin ground state in FeGe. Phys Rev Lett. 2015;114:016803. doi:10.1103/PhysRevLett.114.016803
  • Knyazev YV, Chumakov AI, Dubrovskiy AA, et al. Nuclear forward scattering application to the spiral magnetic structure study in Fe2O3. Phys Rev B. 2020;101:094408. doi:10.1103/PhysRevB.101.094408
  • Lübbers R, Pleines M, Hesse H-J, et al. Magnetism under high pressure studied by 57Fe and 151Eu nuclear scattering of synchrotron radiation. Hyperfine Interact. 1999;120:49–58. doi:10.1023/A:1017017827058
  • Lübbers R, Wortmann G, Grünsteudel H. High-pressure studies with nuclear scattering of synchrotron radiation. Hyperfine Interact. 1999;123:529–559. doi:10.1023/A:1017032125551
  • Bessas D, Glazyrin K, Ellis DS, et al. Pressure-mediated structural transitions in bulk EuTiO3. Phys Rev B. 2018;98:054105. doi:10.1103/PhysRevB.98.054105
  • Sergueev I, Dubrovinsky L, Ekholm M, et al. Hyperfine Splitting and Room-Temperature Ferromagnetism of Ni at Multimegabar Pressure. Phys Rev Lett. 2013;111:157601. doi:10.1103/PhysRevLett.111.157601
  • Potapkin V, Dubrovinsky L, Sergueev I, et al. Magnetic interactions in NiO at ultrahigh pressure. Phys Rev B. 2016;93:201110. doi:10.1103/PhysRevB.93.201110
  • Barla A, Sanchez JP, Ni B, et al. Effect of pressure on the magnetic properties of U(In1-xSnx)3: Moment suppression in U(In0.6Sn0.4)3. Phys Rev B. 2002;66:094425. doi:10.1103/PhysRevB.66.094425
  • Barla A, Sanchez JP, Aksungur A, et al. Pressure driven collapse of the magnetism in the Kondo insulator UNiSn. Phys Rev B. 2005;71:020402. doi:10.1103/PhysRevB.71.020402
  • Barla A, Sanchez J-P, Aksungur A, et al. Delocalization of the U 5f magnetic moments in U(In0.6Sn0.4)3 and UNiSn under high pressure. J Phys Condens Matter. 2005;17:S859–S870. doi:10.1088/0953-8984/17/11/015
  • Troyan I, Gavriliuk A, Ruffer R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering. Science. 2016;351:1303–1306. doi:10.1126/science.aac8176
  • Barla A, Sanchez JP, Haga Y, et al. Pressure-induced magnetic order in golden SmS. Phys Rev Lett. 2004;92:066401. doi:10.1103/PhysRevLett.92.066401
  • Barla A, Derr J, Sanchez JP, et al. High-pressure ground state of SmB6: electronic conduction and long range magnetic order. Phys Rev Lett. 2005;94:166401. doi:10.1103/PhysRevLett.94.166401
  • Barla A, Sanchez J-P, Derr J, et al. Valence and magnetic instabilities in Sm compounds at high pressures. J Phys Condens Matter. 2005;17:S837–S848. doi:10.1088/0953-8984/17/11/013
  • Ishikawa T, Tamasaku K, Yabashi M. High-resolution X-ray monochromators. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers. Detect Assoc Equip. 2005;547:42–49. doi:10.1016/j.nima.2005.05.010
  • Baron AQR, Chumakov AI, Rüffer R, et al. Single-nucleus quantum beats excited by synchrotron radiation. Europhys Lett. 1996;34:331–336. doi:10.1209/epl/i1996-00460-0
  • Bessas D, Sergueev I, Glazyrin K, et al. On a hyperfine interaction in ϵ-Fe. Hyperfine Interact. 2020;241:1. doi:10.1007/s10751-019-1679-3
  • Bessas D, Sergueev I, Glazyrin K, et al. Revealing the hidden hyperfine interactions in ϵ-iron. Phys Rev B. 2020;101:035112. doi:10.1103/PhysRevB.101.035112
  • Gilder S, Glen J. Magnetic properties of hexagonal closed-packed iron deduced from direct observations in a diamond anvil cell. Science. 1998;279:72–74. doi:10.1126/science.279.5347.72
  • Holmes AT, Jaccard D, Behr G, et al. Unconventional superconductivity and non-Fermi liquid behaviour of -iron at high pressure. J Phys Condens Matter. 2004;16:S1121–S1127. doi:10.1088/0953-8984/16/14/021
  • Dewaele A, Denoual C, Anzellini S, et al. Mechanism of the α−ϵ phase transformation in iron. Phys Rev B. 2015;91:174105. doi:10.1103/PhysRevB.91.174105
  • Dupé B, Amadon B, Pellegrini Y-P, et al. Mechanism for the α→ϵ phase transition in iron. Phys Rev B. 2013;87:024103. doi:10.1103/PhysRevB.87.024103
  • Vasiukov DM, Ismailova L, Kupenko I, et al. Sound velocities of skiagite–iron–majorite solid solution to 56 GPa probed by nuclear inelastic scattering. Phys Chem Miner. 2018;45:397–404. doi:10.1007/s00269-017-0928-8
  • Chariton S, McCammon C, Vasiukov DM, et al. Seismic detectability of carbonates in the deep Earth: A nuclear inelastic scattering study. Am Mineral. 2020;105:325–332. doi:10.2138/am-2020-6901
  • Lübbers R, Grünsteudel HF, Chumakov AI, et al. Density of Phonon States in Iron at High Pressure. Science. 2000;287:1250–1253. doi:10.1126/science.287.5456.1250
  • Trautwein AX, Paulsen H, Winkler H, et al. Pressure-induced changes of the vibrational modes of spin-crossover complexes studied by nuclear resonance scattering of synchrotron radiation. J Phys Conf Ser. 2010;217:012125. doi:10.1088/1742-6596/217/1/012125
  • Ksenofontov V, Wortmann G, Chumakov AI, et al. Density of phonon states in superconducting FeSe as a function of temperature and pressure. Phys Rev B. 2010;81:184510. doi:10.1103/PhysRevB.81.184510
  • Glazyrin K, Pourovskii LV, Dubrovinsky L, et al. Importance of Correlation Effects in hcp Iron Revealed by a Pressure-Induced Electronic Topological Transition. Phys Rev Lett. 2013;110:117206. doi:10.1103/PhysRevLett.110.117206
  • Sergueev I, Hermann RP, Bessas D, et al. Effect of pressure, temperature, fluorine doping, and rare earth elements on the phonon density of states of LFeAsO studied by nuclear inelastic scattering. Phys Rev B. 2013;87:064302. doi:10.1103/PhysRevB.87.064302
  • McCammon C, Caracas R, Glazyrin K, et al. Sound velocities of bridgmanite from density of states determined by nuclear inelastic scattering and first-principles calculations. Prog Earth Planet Sci. 2016;3:10. doi:10.1186/s40645-016-0089-2
  • Wortmann G, Ponkratz U, Bielemeier B, et al. Phonon density-of-states in bcc and hcp Eu metal under high pressure measured by 151Eu nuclear inelastic scattering of synchrotron radiation. High Press Res. 2008;28:545–551. doi:10.1080/08957950802541310
  • Sergueev I, Glazyrin K, Kantor I, et al. Quenching rattling modes in skutterudites with pressure. Phys Rev B. 2015;91:224304. doi:10.1103/PhysRevB.91.224304
  • Ponkratz U, Barla A, Sanchez JP, et al. Phonon density of states of SmS under high pressure determined by 149Sm nuclear inelastic scattering. Phys Rev B. 2008;78:104120. doi:10.1103/PhysRevB.78.104120
  • Rubie DC, Frost DJ, Mann U, et al. Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet Sci Lett. 2011;301:31–42. doi:10.1016/j.epsl.2010.11.030
  • Dasgupta R, Chi H, Shimizu N, et al. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: Implications for the origin and distribution of terrestrial carbon. Geochim Cosmochim Acta. 2013;102:191–212. doi:10.1016/j.gca.2012.10.011
  • Birch F. Density and composition of mantle and core. J Geophys Res. 1964;69:4377–4388. doi:10.1029/JZ069i020p04377
  • Dubrovinsky L, Khandarkhaeva S, Fedotenko T, et al. Materials synthesis at terapascal static pressures. Nature. 2022;605:274–278. doi:10.1038/s41586-022-04550-2
  • Dubrovinskaia N, Dubrovinsky L, Solopova NA, et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci Adv. 2016;2:e1600341–e1600341. doi:10.1126/sciadv.1600341
  • Li X, Bykova E, Vasiukov DM, et al. Monoclinic distortion and magnetic transitions in FeO under pressure and temperature. Res Sq. 2024; doi:10.21203/rs.3.rs-4102447/v1
  • Greenberg E, Leonov I, Layek S, et al. Pressure-induced site-selective mott insulator-metal transition in Fe2O3. Phys Rev X. 2018;8:031059. doi:10.1103/PhysRevX.8.031059
  • Khandarkhaeva S, Fedotenko T, Chariton S, et al. Structural Diversity of Magnetite and Products of Its Decomposition at Extreme Conditions. Inorg Chem. 2022;61:1091–1101. doi:10.1021/acs.inorgchem.1c03258
  • Baron AQR, Ruby SL. Time resolved detection of X-rays using large area avalanche photodiodes. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers. Detect Assoc Equip. 1994;343:517–526. doi:10.1016/0168-9002(94)90232-1
  • Kishimoto S. An avalanche photodiode detector for X-ray timing measurements. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers. Detect Assoc Equip. 1991;309:603–605. doi:https://doi.org/10.1016/0168-9002(91)90272-R.
  • Sutter JP, Tsutsui S, Higashinaka R, et al. Relaxation in the spin ice Dy2Ti2O7 studied using nuclear forward scattering. Phys Rev B. 2007;75:140402. doi:10.1103/PhysRevB.75.140402
  • Yaroslavtsev S. SYNCmoss software package for fitting Mössbauer spectra measured with a synchrotron Mössbauer source. J Synchrotron Radiat. 2023;30:1–9. doi:10.1107/S1600577523001686
  • Dauphas N, Hu MY, Baker EM, et al. SciPhon : a data analysis software for nuclear resonant inelastic X-ray scattering with applications to Fe, Kr, Sn, Eu and Dy. J Synchrotron Radiat. 2018;25:1581–1599. doi:10.1107/S1600577518009487
  • Prescher C, McCammon C, Dubrovinsky L. MossA : a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Crystallogr. 2012;45:329–331. doi:10.1107/S0021889812004979
  • Sturhahn W. CONUSS and PHOENIX: evaluation of nuclear resonant scattering data. Hyperfine Interact. 2000;125:149–172. doi:10.1023/A:1012681503686
  • Kohn VG, Chumakov AI. DOS: evaluation of phonon density of states from nuclear resonant inelastic absorption. Hyperfine Interact. 2000;125:205–221. doi:10.1023/A:1012689705503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.