Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 13, 2001 - Issue 6
87
Views
3
CrossRef citations to date
0
Altmetric
Research Article

OZONE EXPOSURE AND THE PRODUCTION OF REACTIVE OXYGEN SPECIES BY BRONCHOALVEOLAR CELLS IN HUMANS

Pages 465-483 | Published online: 01 Oct 2008

REFERENCES

  • Azadniv, M., Torres, A., Boscia, J., Speers, D. M., Frasier, L. M., Utell, M. J., and Frampton, M. W. 2001. Neutrophils in lung inflammation: Which reactive oxygen species are being measured? InhaL ToxicoL 13:549–559.
  • Balmes, J. R., Chen, L. L., Scannell, C., Tager, I., Christian, D., Hearne, P. Q., Kelly, T., and Aris, R. M. 1996. Ozone-induced decrements in FEV, and FVC do not correlate with measures of inflammation. Am.]. Respir. Crit. Care Med. 153:904–909.
  • Bascom, R., Bromberg, P. A., Costa, D. A., Devlin, R., Dockery, D. W., Frampton, M. W., Lambert, W., Samet, J. M., Speizer, F. E., and Utell, M. J. 1996. State of the art review: Health effects of outdoor air pollution. Part 1. Am.]. Respir. Crit. Care Med. 153:3–50.
  • Bass, D. A., Parce, J. W., Dechatelet, L. R., Szedja, P., Seeds, M. C., and Thomas, M. 1983. Flow cytometric studies of oxidative product formation by neutrophils: A graded response to mem-brane stimulation./ Immuno1.130:1910–1917.
  • Becker, S., Madden, M. C., Newman, S. L., Devlin, R. B., and Koren, H. S. 1991. Modulation of human alveolar macrophage properties by ozone exposure in vitro. Toxicol. Appl. Pharmacol. 110:403–415.
  • Bromberg, P. A., and Koren, H. S. 1995. Ozone-induced human respiratory dysfunction and disease. Toxicol. Lett. 82/83:307–316.
  • Cantin, A. M., North, S. L., Fells, G. A., Hubbard, R. C., and Crystal, R. G. 1987. Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis.]. Clin. Invest. 79:1665–1673.
  • Crow, J. P. 1997. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: Implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide Biol. Chem. 1:145–157.
  • Donnelly, P. K., Booth, H., White, M., and Shenton, B. K. 1991. a2-Macroglobu lin and generation of oxygen radicals by granulocytes: Potential role in prevention and treatment of reperfusion injury. Clin. Chim. Acta 202:55–64.
  • Frampton, M. W., Finkelstein, J. N., Roberts, N. J., Jr., Smeglin, A. M., Morrow, P. E., and Utell, M. J. 1989. Effects of nitrogen dioxide exposure on bronchoalveolar lavage proteins in humans. Am. J. Respir. Cell Mot. Biol. 1: 499–505.
  • Frampton, M. W., Morrow, P. E., Torres, A., Cox, C., Voter, K. Z., and Utell, M. J. 1997. Ozone responsiveness in smokers and nonsmokers. Am.]. Respir. Crit. Care Med. 155:116–121.
  • Frampton, M. W., Pryor, W. A., Cueto, R., Cox, C., Morrow, P. E., and Utell, M. J. 1999. Ozone exposure increases aldehydes in human lung epithelial lining fluid. Am. J. Respir. Crit. Care Med. 159:1134–1137.
  • Gavras, J. B., Frampton, M. W., Ryan, D. H., Levy, P. C., Looney, R. J., Cox, C., Morrow, P. E., and Utell, M. J. 1994. Expression of membrane antigens on human alveolar macrophages after expo-sure to nitrogen dioxide. Inhal. Toxicol. 6:633–646.
  • Grose, E. C., Stevens, M. A., Hatch, G. E., Jaskot, R. H., Selgrade, M. J. K., Stead, A. G., Costa, D. L., and Graham, J. A. 1989. The impact of a 12-month exposure to a diurnal pattern of ozone on pulmonary function, antioxidant biochemistry and immunology. In Atmospheric ozone research and its policy implications, eds. T. Schneider, S. D. Lee, G. J. R. Wolters and L. D. Grant, pp. 535–544. Amsterdam: Elsevier.
  • Hoffman, M., Feldman, S. R., and Pizzo, S. V. 1983. a2-macroglobulin "fast" forms inhibit superoxide production by activated macrophages. Biochim. Biophys. Acta 760:421–423.
  • Hubbard, R. C., Ogushi, F., Fells, G. A., Cantin, A. M., Jallat, S., Courtney, M., and Crystal, R. G. 1987. Oxidants spontaneously released by alveolar macrophages of cigarette smokers can inac-tivate the active site of alpha-1-antitrypsin, rendering it ineffective as an inhibitor of neutrophil elastase. J. Clin. Invest. 80:1289–1295.
  • Kobzik, L., Godleski, J. J., and Brain, J. D. 1990. Oxidative metabolism in the alveolar macrophage: Analysis by flow cytometry. J. Leukocyte Biol. 47:295–303.
  • Koren, H. S., Devlin, R. B., Graham, D. E., Mann, R., McGee, M. P., Horstmann, D. H., Kozumbo, W. J., Becker, S., House, D. E., McDonnell, W. F., and Bromberg, P. A. 1989. Ozone-induced inflammation in the lower airways of human subjects. Am. Rev. Respir. Dis. 139:407–415.
  • Lin, C. C., Huang, W. C., and Lin, C. Y. 1989. Chemiluminescence and antibody-dependent, cell-mediated cytotoxicity between human alveolar macrophages and peripheral blood monocytes in smokers, nonsmokers, and lung cancer patients. Chest 95:553–557.
  • Lowry, O. H., Rosebrough, H. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent.]. Biol. Chem. 193:265–275.
  • McGovern, T. J., El-Fawal, H. A., Chen, L. C., and Schlesinger, R. B. 1996. Ozone-induced alteration in beta-adrenergic pharmacological modulation of pulmonary macrophages. Toxicol. Appl. Pharmacol. 137: 51–56.
  • Murphy, J. K., Hoyal, C. R., Livingston, F. R., and Forman, H. J. 1995. Modulation of the alveolar macrophage respiratory burst by hydroperoxides. Free Radical Biol. Med. 18:37–45.
  • Oosting, R. S., van Golde, L. M. G., Verhoef, J., and Van Bree, L. 1991. Species differences in impair-ment and recovery of alveolar macrophage functions following single and repeated ozone expo-sures. Toxicol. Appl. Pharmacol. 110: 170–178.
  • Pryor, W. A., Squadrito, G. L., and Friedeman, M. 1995. The cascade mechanism to explain ozone toxicity: The role of lipid ozonation products. Free Radical Biol. Med. 19:935–941.
  • Pryor, W. A., Bermudez, E., Cueto, R., and Squadrito, G. L. 1996. Detection of aldehydes in bron-choalveolar lavage of rats exposed to ozone. Fundam. AppL Toxicol. 34:148–156.
  • Ryer-Powder, J. E., Amoruso, M. A., Czerniecki, B., Witz, G., and Goldstein, B. D. 1988. Inhalation of ozone produces a decrease in superoxide anion radical production in mouse alveolar macrophages. Am. Rev. Respir. Dis. 138: 1129–1133.
  • Schaberg, T., Klein, U., Rau, M., Eller, J., and Lode, H. 1995. Subpopulations of alveolar macro-phages in smokers and nonsmokers: Relation to the expression of CD11/CD18 molecules and superoxide anion production. Am. J. Respir. Crit. Care Med. 151:1551–1558.
  • Schlesinger, R. B., Zelikoff, J. T., Chen, L. C., and Kinney, P. L. 1992. Assessment of toxicologic inter-actions resulting from acute inhalation exposure to sulfuric acid and ozone mixtures. Toxicol. AppL Pharmacol. 115:183–190.
  • Shapiro, H. M. 1988. Practical flow cytometry. New York: Alan R. Liss.
  • Thurston, G. D., Lippmann, M., Scott, M. B., and Fine, J. B. 1997. Summertime haze air pollution and children with asthma. Am.]. Respir. Crit. Care Med. 155:654–660.
  • Torres, A., Utell, M. J., Morrow, P. E., Voter, K. Z., Whitin, J. C., Cox, C., Looney, R. J., Speers, D. M., Tsai, Y., and Frampton, M. W. 1997. Airway inflammation in smokers and nonsmokers with varying responsiveness to ozone. Am.]. Respir. Crit. Care Med. 156:728–736.
  • Utell, M. J., Morrow, P. E., Hyde, R. W., and Schreck, R. M. 1984. Exposure chamber for studies of pollutant gases and aerosols in human subjects: Design considerations.]. Aerosol ScL 15:219–221.
  • Witz, G., Lawrie, N. J., Amoruso, M. A., and Goldstein, B. D. 1987. Inhibition by reactive aldehydes of superoxide anion radical production from stimulated polymorphonuclear leukocytes and pul-monary alveolar macrophages. Effects on cellular sulfhydryl groups and NADPH oxidase activity. Biochem. Pharmacol. 36:721–726.
  • Yagisawa, M., Yuo, A., Yonemaru, M., Imajoh-Ohmi, S., Kanegasaki, S., Yazaki, Y., and Takaku, F. 1996. Superoxide release and NADPH oxidase components in mature human phagocytes: Correlation between functional capacity and amount of functional proteins. Biochem. Biophys. Res. Commun. 228:510–516.
  • Zelikoff, J. T., Kraemer, G.-L., Vogel, M. C., and Schlesinger, R. B. 1991. lmmunomodulating effects of ozone on macrophage functions important for tumor surveillance and host defense.]. Toxicol. Environ. Health 34:449–467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.