Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 20, 2008 - Issue 11
1,442
Views
32
CrossRef citations to date
0
Altmetric
Research Article

A Biopersistence Study following Exposure to Chrysotile Asbestos Alone or in Combination with Fine Particles

, , , , , & show all
Pages 1009-1028 | Received 30 Apr 2008, Accepted 09 Jun 2008, Published online: 24 Oct 2008

REFERENCES

  • D. M. Bernstein, and J. A. Hoskins. (2006). The health effects of chrysotile: Current perspective based upon recent data. Regul. Toxicol. Pharmacol 45 (3):252–264.
  • D. M. Bernstein, and J. M. R. Riego-Sintes. Methods for the determination of the hazardous properties for human health of man made mineral fibers (MMMF). (1999) European Commission Joint Research Centre, Institute for Health and Consumer Protection, Unit: Toxicology and Chemical Substances, European Chemicals Bureau, EUR 18748 EN, April. http://ecb.ei.jrc.it/DOCUMENTS/Testing-Methods/mmmfweb.pdf.
  • D. M. Bernstein, R. Mast, R. Anderson, T. W. Hesterberg, R. Musselman, O. Kamstrup, and J. Hadley. (1994). An experimental approach to the evaluation of the biopersistence of respirable synthetic fibers and minerals. Environ. Health Perspect 102 (Suppl. 5):15–18.
  • D. M. Bernstein, R. Rogers, and P. Smith. (2004). The biopersistence of Brazilian chrysotile asbestos following inhalation. Inhal. Toxicol. 16 (9):745–761.
  • D. M. Bernstein, R Rogers, and P. Smith. (2005a). The biopersistence of Canadian chrysotile asbestos following inhalation: Final results through 1 year after cessation of exposure. Inhal. Toxicol 17 (1):1–14.
  • D. M. Bernstein, J. Chevalier, and P Smith. (2005b). Comparison of Calidria chrysotile asbestos to pure tremolite: Final results of the inhalation biopersistence and histopathology following short-term exposure. Inhal. Toxicol 17 (9):427–449.
  • R. E. Bolton, J. H. Vincent, A. D. Jones, J. Addison, and S. T. Beckett. (1983). An overload hypothesis for pulmonary clearance of UICC amosite fibres inhaled by rats. Br. J. Ind. Med. 40:264–272.
  • G. P. Brorby, D. W. Berman, J. F. Greene, P. S. Sheehan, and S. E. Holm. (2008). Re-creation of historical chrysotile-containing joint compounds. Inhal. Toxicol 20 (11):1043–1053.
  • W. C. Cannon, E. F. Blanton, and K. E. McDonald. (1983). The flow-past chamber: an improved nose-only exposure system for rodents. Am. Ind. Hyg. Assoc. J. 44 (12):923–928.
  • J. A. Champion, and S. Mitragotri. (2006). Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 103 (13):4930–4934.
  • M. Cossette, and P. Delvaux. Technical evaluation of chrysotile asbestos ore bodiesShort course in mineralogical techniques of asbestos determinationR. C. Ledoux. Mineralogical Association of Canada, Toronto, (1979) 79–109.
  • European Commission. (1997). O.J. L 343/19 of 13 December 1997. Commission Directive 97/69/EC of 5 December 1997 adapting to technical progress for the 23rd time Council Directive 67/ 548/EEC on the approximation of the laws regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Official Journal of the European Union www.EUR-LEX.EUROPE.EU
  • A. Hass. (2007). The phagosome: Compartment with a license to kill. Traffic 8:311–330.
  • T. W. Hesterberg, and G. A. Hart. (1994). A comparison of human exposures to fiberglass with those used in a recent rat chronic inhalation study. Regul. Toxicol. Pharmacol. 20 (3 Pt 2):S35–S46.
  • T. W. Hesterberg, G. Chase, C. Axten, W. C. Miiller, R. P. Musselman, O. Kamstrup, J. Hadley, C. Morscheidt, D. M. Bernstein, and P. Thevenaz. (1998). Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol. Appl. Pharmacol 151 (2):262–275.
  • L. A. Hume, and J. D. Rimstidt. (1992). The biodurability of chrysotile asbestos. Am. Mineral. 77:1125–1128.
  • H. Muhle, B. Bellman, and U. Heinrich. (1988). Overloading of lung clearance during chronic exposure of experimental animals to particles. Ann. Occup. Hyg 32 (Suppl. 1):141–147.
  • R. P. Musselman, W. C. Miiller, W. Eastes, J. G. Hadley, O. Kamstrup, P. Thevenaz, and T. W. Hesterberg. (1994). Biopersistences of man-made vitreous fibers (MMVF) and crocidolite fibers in rat lungs following short-term exposures. Environ. Health Perspect. 102 (Suppl. 5):139–143.
  • G. Oberdorster. (1995). Lung particle overload: Implications for occupational exposures to particles. Regul. Toxicol. Pharmacol 21 (1):123–135.
  • G. Oberdorster. (2000). Determinants of the pathogenicity of manmade vitreous fibers (MMVF). Int. Arch. Occup. Environ. Health 73 (Suppl.):S60–S608.
  • F. L. Pundsack. (1955). The properties of asbestos. I. The colloidal and surface chemistry of chrysotile. J. Phys. Chem 59 (9):892–895.
  • U. E. Schaible, S. Sturgill-Koszycki, P. H. Schlesinger, and D. G. Russell. (1998). Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol. 160:1290–1296.
  • A. Searl, D. Buchanan, R. T. Cullen, A. D. Jones, B. G. Miller, and C. A. Soutar. (1999). Biopersistence and durability of nine mineral fibre types in rat lungs over 12 months. Ann. Occup. Hyg. 43:143–153.
  • I. A. Silver, R. J. Murrills, and D. J. Etherington. (1988). Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res 175 (2):266–276.
  • H. C.W. Skinner, M. Ross, and C. Frondel. Asbestos and other fibrous minerals.. Oxford University Press, Oxford, (1988) .
  • J. H. Thomassin, J. Goni, P. Baillif, J. C. Touray, and M. C. Jaurand. (1977). An XPS study of the dissolution kinetics of chrysotile in 0.1 N oxalic acid at different temperatures. Phys. Chem. Miner 1:385–398.
  • World Health Organization, and Reference methods for measuring airborne man-made mineral fibres (MMMF).. World Health Organization, Copenhagen, (1985) WHO/EURO MMMF Reference Scheme. MMMF WETCfMaEA, ed..