Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 32, 2020 - Issue 2
234
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Determination of the relative contribution of the non-dissolved fraction of ZnO NP on membrane permeability and cytotoxicity

ORCID Icon, ORCID Icon & ORCID Icon
Pages 86-95 | Received 27 Nov 2019, Accepted 11 Mar 2020, Published online: 26 Mar 2020

References

  • Adams LK, Lyon DY, Alvarez P. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19):3527–3532.
  • Aits S, Jäättelä M, Nylandsted J. 2015. Methods for the quantification of lysosomal membrane permeabilization: a hallmark of lysosomal cell death. Methods Cell Biol. 126:261–285.
  • Aude-Garcia C, Dalzon B, Ravanat J-L, Collin-Faure V, Diemer H, Strub JM, Cianferani S, Van Dorsselaer A, Carrière M, Rabilloud T. 2016. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. J Proteomics. 134:174–185.
  • Bacchetta R, Maran B, Marelli M, Santo N, Tremolada P. 2016. Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: a morphological approach. Environ Res. 148:376–385.
  • Bertoli F, Garry D, Monopoli MP, Salvati A, Dawson KA. 2016. The intracellular destiny of the protein corona: a study on its cellular internalization and evolution. ACS Nano. 10(11):10471–10479.
  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4):866–870.
  • Bunderson-Schelvan M, Holian A, Hamilton RF. 2017. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. J Toxicol Environ Health Part B. 20(4):230–248.
  • Cho W-S, Duffin R, Howie SE, Scotton CJ, Wallace WA, MacNee W, Bradley M, Megson IL, Donaldson K. 2011. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 8(1):27.
  • Chuang H-C, Juan H-T, Chang C-N, Yan Y-H, Yuan T-H, Wang J-S, Chen H-C, Hwang Y-H, Lee C-H, Cheng T-J. 2014. Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology. 8(6):593–604.
  • Donaldson K, Schinwald A, Murphy F, Cho W-S, Duffin R, Tran L, Poland C. 2013. The biologically effective dose in inhalation nanotoxicology. Acc Chem Res. 46(3):723–732.
  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. 2005. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2(1):10.
  • Fernández-Cruz ML, Lammel T, Connolly M, Conde E, Barrado AI, Derick S, Perez Y, Fernandez M, Furger C, Navas JM. 2013. Comparative cytotoxicity induced by bulk and nanoparticulated ZnO in the fish and human hepatoma cell lines PLHC-1 and Hep G2. Nanotoxicology. 7(5):935–952.
  • Fukui H, Horie M, Endoh S, Kato H, Fujita K, Nishio K, Komaba LK, Maru J, Miyauhi A, Nakamura A, et al. 2012. Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact. 198(1–3):29–37.
  • Hamilton RF, Buford M, Xiang C, Wu N, Holian A. 2012. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol. 24(14):995–1008.
  • Hamilton RF, Thakur SA, Mayfair JK, Holian A. 2006. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J Biol Chem. 281(45):34218–34226.
  • Hamilton RF, Tsuruoka S, Wu N, Wolfarth M, Porter DW, Bunderson-Schelvan M, Holian A. 2018. Length, but not reactive edges, of cup-stack MWCNT is responsible for toxicity and acute lung inflammation. Toxicol Pathol. 46(1):62–74.
  • Hamilton RF, Wu Z, Mitra S, Shaw PK, Holian A. 2013. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol. 10(1):57.
  • Hirano T, Kikuchi K, Urano Y, Nagano T. 2002. Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J Am Chem Soc. 124(23):6555–6562.
  • Huang L, Gitschier J. 1997. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 17(3):292–297.
  • Ishida DST. 2017. Bacteriolyses of bacterial cell walls by Cu(II) and Zn(II) ions based on antibacterial results of dilution medium method and halo antibacterial test. JARB. 2(2):1–12.
  • Jessop F, Hamilton RF, Rhoderick JF, Fletcher P, Holian A. 2017. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol. 318:58–68.
  • Jiang C, Hsu-Kim H. 2014. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry. Environ Sci Process Impacts. 16(11):2536–2544.
  • Kambe T, Tsuji T, Hashimoto A, Itsumura N. 2015. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 95(3):749–784.
  • Kao Y-Y, Chen Y-C, Cheng T-J, Chiung Y-M, Liu P-S. 2012. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci. 125(2):462–472.
  • Kołodziejczak-Radzimska A, Jesionowski T. 2014. Zinc oxide-from synthesis to application: a review. Mater Basel Switz. 7(4):2833–2881.
  • Liu J, Kang Y, Yin S, Song B, Wei L, Chen L, Shao L. 2017. Zinc oxide nanoparticles induce toxic responses in human neuroblastoma SHSY5Y cells in a size-dependent manner. IJN. 12:8085–8099.
  • Liu H, Yang D, Yang H, Zhang H, Zhang W, Fang Y, Lin Z, Tian L, Lin B, Yan J. 2013. Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: silver, zinc oxide and titanium dioxide. J Hazard Mater. 248–249:478–486.
  • Lu PJ, Fang SW, Cheng WL, Huang SC, Huang MC, Cheng HF. 2018. Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods. J Food Drug Anal. 26(3):1192–1200.
  • Lu S, Zhang W, Zhang R, Liu P, Wang Q, Shang Y, Wu M, Donaldson K, Wang Q. 2015. Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Part Fibre Toxicol. 12(1):5.
  • McCormick NH, Kelleher SL. 2012. ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol. 303(3):C291–297.
  • Migliaccio CT, Buford MC, Jessop F, Holian A. 2008. The IL-4Ralpha pathway in macrophages and its potential role in silica-induced pulmonary fibrosis. J Leukoc Biol. 83(3):630–639.
  • Mohammed YH, Holmes A, Haridass IN, Sanchez WY, Studier H, Grice JE, Benson HAE, Roberts MS. 2019. Support for the safe use of zinc oxide nanoparticle sunscreens: lack of skin penetration or cellular toxicity after repeated application in volunteers. J Invest Dermatol. 139(2):308–315.
  • Müller HK, Kulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP, Porter AE. 2010. pH-dependent toxicity of high aspect ratio zno nanowires in macrophages due to intracellular dissolution. ACS Nano. 4(11):6767–6779.
  • National Research Council (U.S.). 2007. Toxicity testing in the 21st century: a vision and a strategy. Washington, DC: National Academies Press.
  • National Research Council (U.S.), & National Academies Press (U.S.). 2006. Toxicity testing for assessment of environmental agents: interim report. Washington, DC: National Academies Press.
  • Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K. 2012. Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc. 7(1):24–35.
  • Palmiter RD, Cole TB, Findley SD. 1996. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. Embo J. 15(8):1784–1791.
  • Pavan C, Tomatis M, Ghiazza M, Rabolli V, Bolis V, Lison D, Fubini B. 2013. In search of the chemical basis of the hemolytic potential of silicas. Chem Res Toxicol. 26(8):1188–1198.
  • Poynton HC, Chen C, Alexander SL, Major KM, Blalock BJ, Unrine JM. 2019. Enhanced toxicity of environmentally transformed ZnO nanoparticles relative to Zn ions in the epibenthic amphipod Hyalella azteca. Environ Sci: Nano. 6(1):325–340.
  • Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. 2013. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev. 113(3):1904–2074.
  • Sies H, de Groot H. 1992. Role of reactive oxygen species in cell toxicity. Toxicol Lett. 64–65:547–551.
  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3):219–242.
  • Steer ML, Baldwin C, Levitzki A. 1976. Preparation and characterization of hormone-sensitive, resealed erythrocyte ghosts. J Biol Chem. 251(16):4930–4935.
  • Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, et al. 2011. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 5(9):7155–7167.
  • Underhill DM, Ozinsky A. 2002. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 20(1):825–852.
  • Valdiglesias V, Costa C, Kiliç G, Costa S, Pásaro E, Laffon B, Teixeira JP. 2013. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int. 55:92–100.
  • Wang T, Jiang X. 2015. Breaking of the phosphodiester bond: a key factor that induces hemolysis. ACS Appl Mater Interfaces. 7(1):129–136.
  • Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA. 2013. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed Nanotechnol Biol Med. 9(8):1159–1168.
  • Wu F, Harper BJ, Harper SL. 2019. Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environ Toxicol Chem. 38(3):591–602.
  • Xia T, Hamilton RF, Bonner JC, Crandall ED, Elder A, Fazlollahi F, Girtsman TA, Kim K, Mitra S, Ntim SA, et al. 2013. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS nano GO consortium. Environ Health Perspect. 121(6):683–690.
  • Xie Y, He Y, Irwin PL, Jin T, Shi X. 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 77(7):2325–2331.
  • Xie Y, Williams NG, Tolic A, Chrisler WB, Teeguarden JG, Maddux BLS, Pounds JG, Laskin A, Orr G. 2012. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air–liquid interface. Toxicol Sci off J Soc Toxicol. 125(2):450–461.
  • Yin H, Chen R, Casey PS, Ke PC, Davis TP, Chen C. 2015. Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv. 5(90):73963–73973.
  • Zhang L, Jiang Y, Ding Y, Povey M, York D. 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 9(3):479–489.
  • Zhao J, Xu L, Zhang T, Ren G, Yang Z. 2009. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology. 30(2):220–230.
  • Zhong W, Zhou Z. 2019. Sealing the leaky gut represents a beneficial mechanism of zinc intervention for alcoholic liver disease. In: Watson RR, Preedy VR, editors. Dietary Interventions in Gastrointestinal Diseases. London (UK): Academic Press/Elsevier. p. 91–106. [accessed 2020 Feb 1]. https://linkinghub.elsevier.com/retrieve/pii/B9780128144688000089.
  • Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, Huang Q, 2009. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon. 47(5):1351–1358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.