3,794
Views
149
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive review on recent preparation techniques of liposomes

ORCID Icon &
Pages 336-365 | Received 25 Feb 2019, Accepted 09 Sep 2019, Published online: 27 Sep 2019

References

  • Abkarian, M., Loiseau, E., and Massiera, G., 2011. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft matter, 7(10), 4610–4614.
  • Adrian, J.E., et al., 2011. Targeted delivery to neuroblastoma of novel siRNA-anti-GD2-liposomes prepared by dual asymmetric centrifugation and sterol-based post-insertion method. Pharmaceutical research, 28(9), 2261–2272.
  • Aimon, S., et al., 2011. Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLoS One, 6(10), e25529.
  • Akamatsu, K., et al., 2013. Facile method for preparing liposomes by permeation of lipid–alcohol solutions through Shirasu porous glass membranes. Industrial and engineering chemistry research, 52(30), 10329–10332.
  • Akashi, K.I., et al., 1996. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophysical journal, 71(6), 3242.
  • Akbarzadeh, A., et al., 2013. Liposome: classification, preparation, and applications. Nanoscale research letters, 8(1), 102.
  • Allen, T.M., and Cullis, P.R., 2013. Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 65(1), 36–48.
  • Angelova, M.I., and Dimitrov, D.S., 1986. Liposome electroformation. Faraday discussions of the chemical society, 81, 303–311.
  • Angelova, M.I., et al., 1992. Preparation of giant vesicles by external AC electric fields. Kinetics and applications, In: C. Helm, M. Lösche and H. Möhwald, editors. Trends in Colloid and Interface Science VI. Progress in Colloid and Polymer Science. Dresden, Germany: Steinkopff, 127–131.
  • Arriaga, L.R., et al., 2014. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small, 10(5), 950–956.
  • Aryasomayajula, B., Salzano, G., and Torchilin, V.P., 2017. Multifunctional liposomes, in: R. Zeineldin, editor. Cancer nanotechnology. Methods in molecular biology. New York, NY: Humana Press, 41–61.
  • Badens, E., Magnan, C., and Charbit, G., 2001. Microparticles of soy lecithin formed by supercritical processes. Biotechnology and bioengineering, 72(2), 194–204.
  • Bagatolli, L.A., Parasassi, T., and Gratton, E., 2000. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study. Chemistry and physics of lipids, 105(2), 135–147.
  • Balbino, T.A., et al., 2013. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chemical engineering journal, 226, 423–433.
  • Balbino, T.A., et al., 2016. Microfluidic assembly of pDNA/cationic liposome lipoplexes with high pDNA loading for gene delivery. Langmuir, 32(7), 1799–1807.
  • Balbino, T.A., et al., 2017. Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes. Colloids and surfaces B: biointerfaces, 152, 406–413.
  • Bangham, A.D., and Horne, R.W., 1964. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of molecular biology, 8(5), 660–668.
  • Bangham, A.D., Pethica, B.A., and Seaman, G.V.F., 1958. The charged groups at the interface of some blood cells. The biochemical journal, 69(1), 12–19.
  • Bangham, A.D., Standish, M.M., and Watkins, J.C., 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of molecular biology, 13(1), 238–252.
  • Batzri, S., and Korn, E.D., 1973. Single bilayer liposomes prepared without sonication. Biochimica et biophysica acta (bba) – biomembranes, 298(4), 1015–1019.
  • Bayerl, T.M., and Bloom, M., 1990. Physical properties of single phospholipid bilayers adsorbed to micro glass beads – a new vesicular model system studied by 2H-nuclear magnetic resonance. Biophysical journal, 58(2), 357–362.
  • Baykal-Caglar, E., et al., 2012. Preparation of giant unilamellar vesicles from damp lipid film for better lipid compositional uniformity. Biochimica et biophysica acta (bba) – biomembranes, 1818(11), 2598–2604.
  • Belliveau, N.M., et al., 2012. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Molecular therapy – nucleic acids, 1, e37.
  • Bhatia, T., et al., 2016. Spatial distribution and activity of Na+/K+-ATPase in lipid bilayer membranes with phase boundaries. Biochimica et biophysica acta (bba) – biomembranes, 1858, 1390–1399.
  • Bi, H., et al., 2013. Electroformation of giant unilamellar vesicles using interdigitated ITO electrodes. Journal of materials chemistry A, 1(24), 7125–7130.
  • Billerit, C., et al., 2012. Formation of giant unilamellar vesicles from spin-coated lipid films by localized IR heating. Soft matter, 8(42), 10823–10826.
  • Blosser, M.C., Horst, B.G., and Keller, S.L., 2016. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft matter, 12(35), 7364–7371.
  • Breton, M., Amirkavei, M., and Mir, L.M., 2015. Optimization of the electroformation of giant unilamellar vesicles (GUVs) with unsaturated phospholipids. The journal of membrane biology, 248(5), 827–835.
  • Bridson, R.H., et al., 2006. The preparation of liposomes using compressed carbon dioxide: strategies, important considerations and comparison with conventional techniques. Journal of pharmacy and pharmacology, 58(6), 775–785.
  • Buboltz, J.T., 2009. A more efficient device for preparing model-membrane liposomes by the rapid solvent exchange method. Review of scientific instruments, 80(12), 124301–124305.
  • Campardelli, R., et al., 2016a. Efficient encapsulation of proteins in submicro liposomes using a supercritical fluid assisted continuous process. The journal of supercritical fluids, 107, 163–169.
  • Campardelli, R., Trucillo, P., and Reverchon, E., 2016b. A supercritical fluid-based process for the production of fluorescein-loaded liposomes. Industrial and engineering chemistry research, 55(18), 5359–5365.
  • Campillo, C., et al., 2013. Unexpected membrane dynamics unveiled by membrane nanotube extrusion. Biophysical journal, 104(6), 1248–1256.
  • Capretto, L., et al., 2013. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Advanced drug delivery reviews, 65(11-12), 1496–1532.
  • Carugo, D., et al., 2016. Liposome production by microfluidics: potential and limiting factors. Scientific reports, 6(1), 25876.
  • Cassells, A.C., 1989. Uptake of viruses by plant protoplasts and their use as transforming agents, In: Y.P.S. Bajaj, editor. Plant protoplasts and genetic engineering II. Biotechnology in agriculture and forestry, Berlin, Heidelberg: Springer, 388–405.
  • Castor, T.P., and Chu, L., 1996. Methods and apparatus for making liposomes containing hydrophobic drugs, WO9615774.
  • Castor, T.P., 1994. Methods and apparatus for making liposomes, WO9427581.
  • Castor, T.P., 2005. Phospholipid nanosomes. Current drug delivery, 2(4), 329–340.
  • Cavegn, A., and Dittrich, P.S., 2011. Formation, immobilization and local manipulation of tubular lipid membrane structures, in: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 1406–1408.
  • Chang, H.I., and Yeh, M.K., 2012. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. International journal of nanomedicine, 7, 49–60.
  • Charcosset, C., et al., 2015. Preparation of liposomes at large scale using the ethanol injection method: effect of scale-up and injection devices. Chemical engineering research and design, 94, 508–515.
  • Chatterjee, D., et al., 2006. Droplet-based microfluidics with nonaqueous solvents and solutions. Lab on a chip, 6(2), 199–206.
  • Chen, C., et al., 2010. An overview of liposome lyophilization and its future potential. Journal of controlled release, 142(3), 299–311.
  • Chen, D., et al., 2012. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. Journal of the American chemical society, 134(16), 6948–6951.
  • Cortesi, R., 1999. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. Journal of microencapsulation, 16(2), 251–256.
  • Costa, A.P., et al., 2016. Liposome formation using a coaxial turbulent jet in co-flow. Pharmaceutical research, 33(2), 404–416.
  • Cui, J., et al., 2006. Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent systems. International journal of pharmaceutics, 312(1-2), 131–136.
  • Cullis, P.R., et al., 1989. Generating and loading of liposomal systems for drug-delivery applications. Advanced drug delivery reviews, 3(3), 267–282.
  • Dao, T.P.T., et al., 2017. Membrane properties of giant polymer and lipid vesicles obtained by electroformation and PVA gel-assisted hydration methods. Colloids and surfaces A: physicochemical and engineering aspects, 533, 347–353.
  • Davies, R.T., Kim, D., and Park, J., 2012. Formation of liposomes using a 3D flow focusing microfluidic device with spatially patterned wettability by corona discharge. Journal of micromechanics and microengineering, 22(5), 055003.
  • Deshpande, S., and Dekker, C., 2018. On-chip microfluidic production of cell-sized liposomes. Nature protocols, 13(5), 856.
  • Deshpande, S., Birnie, A., and Dekker, C., 2017. On-chip density-based purification of liposomes. Biomicrofluidics, 11(3), 034106.
  • Deshpande, S., et al., 2016. Octanol-assisted liposome assembly on chip. Nature communications, 7, 10447.
  • Deshpande, S., et al., 2018. Mechanical division of cell-sized liposomes. ACS nano, 12(3), 2560–2568.
  • Dhand, C., et al., 2014. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. RSC Advances, 4(62), 32673–32689.
  • Dianat, G., and Gupta, M., 2017. Sequential deposition of patterned porous polymers using poly (dimethylsiloxane) masks. Polymer, 126, 463–469.
  • Dianat, G., et al., 2016. Vapor phase fabrication of hydrophilic and hydrophobic asymmetric polymer membranes. Macromolecular materials and engineering, 301(9), 1037–1043.
  • Diguet, A., et al., 2009. Preparation of phospholipid multilayer patterns of controlled size and thickness by capillary assembly on a microstructured substrate. Small, 5(14), 1661–1666.
  • Dimitrov, D.S., and Angelova, M.I., 1987. Lipid swelling and liposome formation on solid surfaces in external electric fields, In: H. Hoffman, editor. New trends in colloid science. Progress in colloid & polymer science, Dresden, Germany: Steinkopff, 48–56.
  • Dimitrov, D.S., and Angelova, M.I., 1988. Lipid swelling and liposome formation mediated by electric fields. Bioelectrochemistry and bioenergetics, 19(2), 323–336.
  • Dimov, N., et al., 2017. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Scientific reports, 7(1), 12045.
  • Dittrich, P.S., et al., 2006. On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab on a chip, 6(4), 488–493.
  • do Nascimento, D. F., et al., 2016. Microfluidic fabrication of Pluronic vesicles with controlled permeability. Langmuir, 32(21), 5350–5355. 
  • Elhissi, A., Phoenix, D., and Ahmed, W., 2015. Some approaches to large-scale manufacturing of liposomes, In: W. Ahmed and M. Jackson, editors. Emerging nanotechnologies for manufacturing, Norwich, NY: William Andrew, 402–417, 2nd ed.
  • Estes, D.J., and Mayer, M., 2005a. Electroformation of giant liposomes from spin-coated films of lipids. Colloids and surfaces B: biointerfaces, 42(2), 115–123.
  • Estes, D.J., and Mayer, M., 2005b. Giant liposomes in physiological buffer using electroformation in a flow chamber. Biochimica et biophysica acta (bba) – biomembranes, 1712(2), 152–160.
  • Evans, E., and Skalak, R., 1980. Mechanics and thermodynamics of biomembranes, Boca Raton, FL: CRC Press.
  • Forbes, N., et al., 2019. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. International journal of pharmaceutics, 556, 68–81.
  • Frank, F.C., 1958. I. Liquid crystals. On the theory of liquid crystals. Discussions of the Faraday society, 25, 19–28.
  • Frederiksen, L., et al., 1994., Use of supercritical carbon dioxide for preparation of pharmaceutical formulations, in: 3rd International Symposium on Supercritical Fluids, vol. 3, 235–240.
  • Frederiksen, L., et al., 1997. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. Journal of pharmaceutical sciences, 86(8), 921–928.
  • Fritze, A., et al., 2006. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochimica et biophysica acta (bba) – biomembranes, 1758(10), 1633–1640.
  • Fromherz, P., 1983. Lipid-vesicle structure: size control by edge-active agents. Chemical physics letters., 94(3), 259–266.
  • Funakoshi, K., Suzuki, H., and Takeuchi, S., 2007. Formation of giant lipid vesicle like compartments from a planar lipid membrane by a pulsed jet flow. Journal of the American chemical society, 129(42), 12608–12609.
  • Genç, R., Ortiz, M., and Sullivan, C.K., 2009. Curvature-tuned preparation of nanoliposomes. Langmuir, 25(21), 12604–12613.
  • Gentine, P., Bourel-Bonnet, L., and Frisch, B., 2013. Modified and derived ethanol injection toward liposomes: development of the process. Journal of liposome research, 23(1), 11–19.
  • Girard, P., et al., 2004. A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophysical journal., 87(1), 419–429.
  • Gregoriadis, G., and Ryman, B.E., 1971. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochemical journal, 124, 58P.
  • Gulati, M., et al., 1998. Development of liposomal amphotericin B formulation. Journal of microencapsulation, 15(2), 137–151.
  • Hann, I.M., and Prentice, H.G., 2001. Lipid-based amphotericin B: a review of the last 10 years of use. International journal of antimicrobial agents, 17(3), 161–169.
  • Hansen, J.S., et al., 2013. Lipid directed intrinsic membrane protein segregation. Journal of the American chemical society, 135(46), 17294–17297.
  • Has, C., Phapal, S.M., and Sunthar, P., 2018. Rapid single-step formation of liposomes by flow assisted stationary phase interdiffusion. Chemistry and physics of lipids, 212, 144–151.
  • Hase, M., et al., 2007. Manipulation of cell-sized phospholipid-coated microdroplets and their use as biochemical microreactors. Langmuir, 23(2), 348–352.
  • Hauschild, S., et al., 2005. Direct preparation and loading of lipid and polymer vesicles using inkjets. Small, 1(12), 1177–1180.
  • Hauser, H., and Gains, N., 1982. Spontaneous vesiculation of phospholipids: a simple and quick method of forming unilamellar vesicles. Proceedings of the national academy of sciences, 79(6), 1683–1687.
  • Hauser, H., 1984. Some aspects of the phase behaviour of charged lipids. Biochimica et biophysica acta (bba) – biomembranes, 772(1), 37–50.
  • Hauser, H., Mantsch, H.H., and Casal, H.L., 1990. Spontaneous formation of small unilamellar vesicles by pH jump: a pH gradient across the bilayer membrane as the driving force. Biochemistry, 29(9), 2321–2329.
  • Helfrich, W., 1974. The size of bilayer vesicles generated by sonication. Physics letters a, 50(2), 115–116. 
  • Herold, C., et al., 2012. Efficient electroformation of supergiant unilamellar vesicles containing cationic lipids on ITO-coated electrodes. Langmuir, 28(13), 5518–5521.
  • Hirsch, M., et al., 2009. Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation (DAC). Journal of controlled release, 135(1), 80–88.
  • Hong, J.S., et al., 2010. Microfluidic directed self-assembly of liposome- hydrogel hybrid nanoparticles. Langmuir, 26(13), 11581–11588.
  • Hood, R.R., and DeVoe, D.L., 2015. High-throughput continuous flow production of nanoscale liposomes by microfluidic vertical flow focusing. Small, 11(43), 5790–5799.
  • Hood, R.R., et al., 2014a. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array. Lab on a chip, 14(14), 2403–2409.
  • Hood, R.R., et al., 2013. Microfluidic synthesis of PEG-and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharmaceutical research, 30(6), 1597–1607.
  • Hood, R.R., Vreeland, W.N., and DeVoe, D.L., 2014b. Microfluidic remote loading for rapid single-step liposomal drug preparation. Lab on a chip, 14(17), 3359–3367.
  • Horger, K.S., et al., 2009. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. Journal of the American chemical society, 131(5), 1810–1819.
  • Hu, P.C., Li, S., and Malmstadt, N., 2011. Microfluidic fabrication of asymmetric giant lipid vesicles. ACS applied materials and interfaces, 3(5), 1434–1440.
  • Huang, X., et al., 2010. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer research, 30(2), 463–466.
  • Imura, T., et al., 2003a. Control of physicochemical properties of liposomes using a supercritical reverse phase evaporation method. Langmuir, 19(6), 2021–2025.
  • Imura, T., et al., 2003b. Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method. Colloids and surfaces B: biointerfaces, 27(2-3), 133–140.
  • Ingebrigtsen, S.G., Škalko-Basnet, N., and Holsaeter, A.M., 2016. Development and optimization of a new processing approach for manufacturing topical liposomes-in-hydrogel drug formulations by dual asymmetric centrifugation. Drug development and industrial pharmacy, 42(9), 1375–1383.
  • Ingebrigtsen, S.G., et al., 2017. Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method-dual asymmetric centrifugation. European journal of pharmaceutical sciences, 97, 192–199.
  • Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W., 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the chemical society, Faraday transactions 2, 72, 1525–1568.
  • Jaafar-Maalej, C., Charcosset, C., and Fessi, H., 2011. A new method for liposome preparation using a membrane contactor. Journal of liposome research, 21(3), 213–220.
  • Jahn, A., et al., 2013. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation. Langmuir, 29(5), 1717–1723.
  • Jahn, A., et al., 2010. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS nano, 4(4), 2077–2087.
  • Jahn, A., et al., 2007. Microfluidic directed formation of liposomes of controlled size. Langmuir : the acs journal of surfaces and colloids, 23(11), 6289–6293.
  • Jahn, A., et al., 2004. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. Journal of the American chemical society, 126(9), 2674–2675.
  • Jeffs, L.B., et al., 2005. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharmaceutical research, 22(3), 362–372.
  • Jesorka, A., and Orwar, O., 2008. Liposomes: technologies and analytical applications. Annual review of analytical chemistry, 1(1), 801–832.
  • Joshi, S., et al., 2016. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. International journal of pharmaceutics, 514(1), 160–168.
  • Justo, O.R., and Moraes, A.M., 2005. Kanamycin incorporation in lipid vesicles prepared by ethanol injection designed for tuberculosis treatment. Journal of pharmacy and pharmacology, 57(1), 23–30.
  • Kagawa, Y., and Racker, E., 1971. Partial resolution of the enzymes catalyzing photophosphorylation. XXV. Reconstitution of vesicles catalyzing phosphate adenosin triphosphate exchange. The journal of biological chemistry, 246, 5477–5487.
  • Kale, A.A., and Torchilin, V.P., 2010. Environment-responsive multifunctional liposomes. Methods in molecular biology, 605, 213–242.
  • Karatekin, E., et al., 2003. Cascades of transient pores in giant vesicles: line tension and transport. Biophysical journal, 84(3), 1734–1749.,
  • Karn, P.R., et al., 2013. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: comparison with the modified conventional Bangham method. International journal of nanomedicine, 8, 365.
  • Kastner, E., et al., 2014. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. International journal of pharmaceutics, 477(1-2), 361–368.
  • Kastner, E., et al., 2015. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. International journal of pharmaceutics, 485(1-2), 122–130.
  • Kikuchi, H., Yamauchi, H., and Hirota, S., 1991. A spray-drying method for mass production of liposomes. Chemical and pharmaceutical bulletin, 39, 1522–1527.
  • Kimura, N., et al., 2018. Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS omega, 3(5), 5044–5051.
  • Kirchner, S.R., et al., 2012. Membrane composition of jetted lipid vesicles: a Raman spectroscopy study. Journal of biophotonics, 5(1), 40–46.
  • Kono, K., et al., 2015. Multifunctional liposomes having target specificity, temperature-triggered release, and near-infrared fluorescence imaging for tumor-specific chemotherapy. Journal of controlled release, 216, 69–77.
  • Kraft, J.C., et al., 2014. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. Journal of pharmaceutical sciences, 103(1), 29–52.
  • Kremer, J.M.H., et al., 1977. Vesicles of variable diameter prepared by a modified injection method. Biochemistry, 16(17), 3932–3935.
  • Kresse, K.M., et al., 2016. Novel application of cellulose paper as a platform for the macromolecular self-assembly of biomimetic giant liposomes. ACS applied materials & interfaces, 8(47), 32102–32107.
  • Kurakazu, T., and Takeuchi, S., 2010. Generation of lipid vesicles using microfluidic T-junctions with pneumatic valves, in: 23rd International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 1115–1118.
  • Kuribayashi, K., and Takeuchi, S., 2008. Electroformation of solvent-free lipid membranes over microaperture array, in: 21st International Conference on Micro Electro Mechanical Systems, IEEE, 296–299.
  • Kuribayashi, K., et al., 2006. Electroformation of giant liposomes in microfluidic channels. Measurement science and technology, 17(12), 3121.
  • Laouini, A., et al., 2013a. Preparation of liposomes: a novel application of microengineered membranes–from laboratory scale to large scale. Colloids and surfaces B: biointerfaces, 112, 272–278.
  • Laouini, A., et al., 2013b. Preparation of liposomes: a novel application of microengineered membranes-investigation of the process parameters and application to the encapsulation of vitamin E. RSC advances, 3(15), 4985–4994.
  • Laouini, A., et al., 2011. Liposome preparation using a hollow fiber membrane contactor–application to spironolactone encapsulation. International journal of pharmaceutics, 415(1-2), 53–61.
  • Lasic, D.D., and Martin, F.J., 1990. On the mechanism of vesicle formation. Journal of membrane science, 50(2), 215–222.
  • Lasic, D.D., and Papahadjopoulos, D., 1996. Liposomes and biopolymers in drug and gene delivery. Current opinion in solid state and materials science, 1(3), 392–400.
  • Lasic, D.D., 1987. A general model of vesicle formation. Journal of theoretical biology, 124, 35–41.
  • Lasic, D.D., 1988. The mechanism of vesicle formation. The biochemical journal, 256(1), 1.
  • Lasic, D.D., 1993. Liposomes: from physics to applications. Amsterdam: Elsevier.
  • Lasic, D.D., et al., 2001. Spontaneous vesiculation. Advances in colloid and interface science, 89-90, 337–349.
  • Le Berre, M., et al., 2008. Electroformation of giant phospholipid vesicles on a silicon substrate: advantages of controllable surface properties. Langmuir, 24(6), 2643–2649.
  • Lesoin, L., et al., 2011a. Development of a continuous dense gas process for the production of liposomes. The journal of supercritical fluids, 60, 51–62.
  • Lesoin, L., et al., 2011b. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. The journal of supercritical fluids, 57(2), 162–174.
  • Lewrick, F., and Süss, R., 2010. Remote loading of anthracyclines into liposomes, In: V. Weissig, editor. Liposomes. Methods in molecular biology (methods and protocols), New York, NY: Humana Press, 139–145.
  • Li, C., and Deng, Y., 2004. A novel method for the preparation of liposomes: freeze drying of monophase solutions. Journal of pharmaceutical sciences, 93(6), 1403–1414.
  • Li, Y., et al., 2014. Electroformed giant vesicles from a binary mixture of phospholipids and quaternary ammonium salts. Journal of dispersion science and technology, 35(5), 672–676.
  • Lin, Y.C., et al., 2006. Manipulating self-assembled phospholipid microtubes using microfluidic technology. Sensors and actuators b: chemical, 117(2), 464–471.
  • Lin, Y.C., et al., 2005., A new method for the preparation of self-assembled phospholipid microtubes using microfluidic technology, in: 13th International Conference on Solid State Sensors and Actuators and Microsystems, IEEE, vol. 2, 1592–1595.
  • Lira, R.B., Dimova, R., and Riske, K.A., 2014. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties. Biophysical journal, 107(7), 1609–1619.
  • Lu, L., Schertzer, J.W., and Chiarot, P.R., 2015. Continuous microfluidic fabrication of synthetic asymmetric vesicles. Lab on a chip, 15(17), 3591–3599.
  • Maeda, K., et al., 2012. Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. Advanced materials, 24(10), 1340–1346.
  • Maeki, M., et al., 2017. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS one, 12(11), e0187962.
  • Magnan, C., et al., 2000. Soy lecithin micronization by precipitation with a compressed fluid antisolvent-influence of process parameters. The journal of supercritical fluids, 19(1), 69–77.
  • Maitani, Y., et al., 2007. Cationic liposome (DC-Chol/DOPE= 1: 2) and a modified ethanol injection method to prepare liposomes, increased gene expression. International journal of pharmaceutics, 342(1-2), 33–39.
  • Maitani, Y., et al., 2001. Modified ethanol injection method for liposomes containing β-sitosterol β-D-glucoside. Journal of liposome research, 11(1), 115–125.
  • Massing, U., Cicko, S., and Ziroli, V., 2008. Dual asymmetric centrifugation (DAC)–a new technique for liposome preparation. Journal of controlled release, 125(1), 16–24.
  • Matosevic, S., and Paegel, B.M., 2011. Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line. Journal of the American chemical society, 133(9), 2798–2800.
  • Maulucci, G., et al., 2005. Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophysical journal, 88(5), 3545–3550.
  • Méléard, P., Bagatolli, L.A., and Pott, T., 2009. Giant unilamellar vesicle electroformation: from lipid mixtures to native membranes under physiological conditions. Methods in enzymology, 465, 161–176.
  • Mertins, O., et al., 2009. Electroformation of giant vesicles from an inverse phase precursor. Biophysical journal, 96(7), 2719–2726.
  • Meure, L.A., Foster, N.R., and Dehghani, F., 2008. Conventional and dense gas techniques for the production of liposomes: a review. AAPS pharmscitech, 9(3), 798–809.
  • Meure, L.A., et al., 2009. The depressurization of an expanded solution into aqueous media for the bulk production of liposomes. Langmuir, 25(1), 326–337.
  • Micheletto, Y.M.S., et al., 2016. Electroformation of giant unilamellar vesicles: investigating vesicle fusion versus bulge merging. Langmuir, 32(32), 8123–8130.
  • Michelon, M., et al., 2017. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices. Colloids and surfaces B: biointerfaces, 156, 349–357.
  • Mijajlovic, M., et al., 2013. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids and surfaces B: biointerfaces, 104, 276–281.
  • Mikelj, M., et al., 2013. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions. Analytical biochemistry, 435(2), 174–180.
  • Montes, L.R., et al., 2007. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophysical journal, 93(10), 3548–3554.
  • Mora, N.L., et al., 2017. Evaluation of dextran (ethylene glycol) hydrogel films for giant unilamellar lipid vesicle production and their application for the encapsulation of polymersomes. Soft matter, 13(33), 5580–5588.
  • Mora, N.L., et al., 2014. Preparation of size tunable giant vesicles from cross-linked dextran (ethylene glycol) hydrogels. Chemical communications (Cambridge, England), 50, 1953–1955.
  • Morita, M., et al., 2015. Droplet-shooting and size-filtration (DSSF) method for synthesis of cell-sized liposomes with controlled lipid compositions. ChemBioChem : a European journal of chemical biology, 16(14), 2029–2035.
  • Mortazavi, S.M., et al., 2007. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. Journal of biotechnology, 129(4), 604–613.
  • Motta, I., et al., 2015. Formation of giant unilamellar proteo-liposomes by osmotic shock. Langmuir, 31(25), 7091–7099.
  • Mouritsen, O.G., 2011. Lipids, curvature, and nano-medicine. European journal of lipid science and technology : ejlst, 113(10), 1174–1187.
  • Movsesian, N., et al., 2018. Giant lipid vesicle formation using vapor-deposited charged porous polymers. Langmuir, 34(30), 9025–9035.
  • Mozafari, M.R., 2005. Liposomes: an overview of manufacturing techniques. Cellular and molecular biology letters, 10(4), 711–719.
  • Mozafari, M.R., Reed, C.J., and Rostron, C., 2002. Development of non-toxic liposomal formulations for gene and drug delivery to the lung. Technology and health care, 10, 342–344.
  • Nguyen, N.T., and Wu, Z., 2005. Micromixers–a review. Journal of micromechanics and microengineering, 15(2), R1.
  • Nieh, M.P., et al., 2003. Concentration-independent spontaneously forming biomimetric vesicles. Physical review letters, 91(15), 158105.
  • Nishimura, K., et al., 2012. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets. Journal of colloid and interface science, 376(1), 119–125.
  • Nisisako, T., 2008. Microstructured devices for preparing controlled multiple emulsions. Chemical engineering & technology, 31(8), 1091–1098.
  • Nisisako, T., 2016. Recent advances in microfluidic production of Janus droplets and particles. Current opinion in colloid and interface science, 25, 1–12.
  • Noble, G.T., et al., 2014. Ligand-targeted liposome design: challenges and fundamental considerations. Trends in biotechnology, 32(1), 32–45.
  • Nourian, Z., Roelofsen, W., and Danelon, C., 2012. Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angewandte chemie, 124(13), 3168–3172.
  • Obeid, M.A., et al., 2017. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. International journal of pharmaceutics, 516(1-2), 52–60.
  • Okumura, Y., and Iwata, Y., 2011. Electroformation of giant vesicles on indium tin oxide (ITO)-coated poly (ethylene terephthalate)(PET) electrodes. Membranes, 1(2), 109–118.
  • Okumura, Y., and Oana, S., 2011. Effect of counter electrode in electroformation of giant vesicles. Membranes, 1(4), 345–353.
  • Okumura, Y., and Sugiyama, T., 2011. Electroformation of giant vesicles on a polymer mesh. Membranes, 1(3), 184–194.
  • Okumura, Y., and Urita, K., 2011. Rapid electroformation of giant vesicles. Chemistry letters, 40(5), 530–532.
  • Okumura, Y., et al., 2007. Electroformation of giant vesicles on a non-electroconductive substrate. Journal of the American chemical society, 129(6), 1490–1491.
  • Ola, H., Yahiya, S.A., and El-Gazayerly, O.N., 2010. Effect of formulation design and freeze-drying on properties of fluconazole multilamellar liposomes. Saudi pharmaceutical journal, 18, 217–224.
  • Olson, F., et al., 1979. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochimica et biophysica acta (bba) - biomembranes, 557(1), 9–23.
  • Osaki, T., et al., 2011a. Selective lipid-patterning for heterologous giant liposome array, in: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, RSC, Seattle, Washington, USA, 1137–1139.
  • Osaki, T., et al., 2011b. Uniformly-sized giant liposome formation with gentle hydration, in: 24th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 103–106.
  • Ota, S., Yoshizawa, S., and Takeuchi, S., 2009. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angewandte chemie (international ed. in English), 48(35), 6533–6537.
  • Otake, K., et al., 2001. Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir, 17(13), 3898–3901.
  • Otake, K., et al., 2006a. One-step preparation of chitosan-coated cationic liposomes by an improved supercritical reverse-phase evaporation method. Langmuir, 22(9), 4054–4059.
  • Otake, K., et al., 2006b. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir, 22(6), 2543–2550.
  • Ottino, J.M., and Wiggins, S., 2004. Introduction: mixing in microfluidics. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences, 362(1818), 923–935.
  • Patil, Y.P., and Jadhav, S., 2014. Novel methods for liposome preparation. Chemistry and physics of lipids, 177, 8–18.
  • Pautot, S., Frisken, B.J., and Weitz, D.A., 2003a. Engineering asymmetric vesicles. Proceedings of the national academy of sciences of the united states of America, 100(19), 10718–10721.
  • Pautot, S., Frisken, B.J., and Weitz, D.A., 2003b. Production of unilamellar vesicles using an inverted emulsion. Langmuir, 19(7), 2870–2879.
  • Pazzi, J., Xu, M., and Subramaniam, A.B., 2019. Size distributions and yields of giant vesicles assembled on cellulose papers and cotton fabric. Langmuir, 35(24), 7798–7804.
  • Pereno, V., et al., 2017. Electroformation of giant unilamellar vesicles on stainless steel electrodes. ACS omega, 2(3), 994–1002.
  • Peruzzi, J., et al., 2016. Dynamics of hydrogel-assisted giant unilamellar vesicle formation from unsaturated lipid systems. Langmuir, 32(48), 12702–12709.
  • Peschka, R., Purmann, T., and Schubert, R., 1998. Cross-flow filtration–an improved detergent removal technique for the preparation of liposomes. International journal of pharmaceutics, 162(1-2), 177–183.
  • Peterlin, P., and Arrigler, V., 2008. Electroformation in a flow chamber with solution exchange as a means of preparation of flaccid giant vesicles. Colloids and surfaces B: biointerfaces, 64(1), 77–87.
  • Petit, J., et al., 2016. Vesicles-on-a-chip: a universal microfluidic platform for the assembly of liposomes and polymersomes. The European physical journal e, soft matter, 39(6), 59.
  • Petrov, A.G., and Bivas, I., 1984. Elastic and flexoelectic aspects of out-of-plane fluctuations in biological and model membranes. Progress in surface science, 16(4), 389–511.
  • Pham, T.T., et al., 2012. Liposome and niosome preparation using a membrane contactor for scale-up. Colloids and surfaces B: biointerfaces, 94, 15–21.
  • Phapal, S.M., and Sunthar, P., 2013. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases. Chemistry and physics of lipids, 172, 20–30.
  • Phapal, S.M., Has, C., and Sunthar, P., 2017. Spontaneous formation of single component liposomes from a solution. Chemistry and physics of lipids, 205, 25–33.
  • Pidgeon, C., et al., 1987. Multilayered vesicles prepared by reverse-phase evaporation: liposome structure and optimum solute entrapment. Biochemistry, 26(1), 17–29.
  • Politano, T.J., et al., 2010. AC-electric field dependent electroformation of giant lipid vesicles. Colloids and surfaces B: biointerfaces, 79(1), 75–82.
  • Pott, T., Bouvrais, H., and Méléard, P., 2008. Giant unilamellar vesicle formation under physiologically relevant conditions. Chemistry and physics of lipids, 154(2), 115–119.
  • Pradhan, P., et al., 2008. A facile microfluidic method for production of liposomes. Anticancer research, 28(2A), 943–947.
  • Reeves, J.P., and Dowben, R.M., 1969. Formation and properties of thin-walled phospholipid vesicles. Journal of cellular physiology, 73(1), 49–60.
  • Reverchon, E., and Porta, G.D., 2001. Supercritical fluids-assisted micronization techniques. low-impact routes for particle production. Pure and applied chemistry, 73(8), 1293–1297.
  • Richmond, D.L., et al., 2011. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proceedings of the national academy of sciences, 108(23), 9431–9436.
  • Rodriguez, N., Pincet, F., and Cribier, S., 2005. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids and surfaces B: biointerfaces, 42(2), 125–130.
  • Rossier, O., et al., 2003. Giant vesicles under flows: extrusion and retraction of tubes. Langmuir, 19(3), 575–584.
  • Santo, I.E., et al., 2014. Liposomes preparation using a supercritical fluid assisted continuous process. Chemical engineering journal, 249, 153–159.
  • Santo, I.E., et al., 2013. Characteristics of lipid micro-and nanoparticles based on supercritical formation for potential pharmaceutical application. Nanoscale research letters, 8(1), 386.
  • Saunders, L., Perrin, J., and Gammack, D., 1962. Ultrasonic irradiation of some phospholipid sols. The journal of pharmacy and pharmacology, 14, 567–572.
  • Schubert, R., 2003. Liposome preparation by detergent removal. Methods in enzymology, 367, 46–70.
  • Schultze, J., et al., 2019. Preparation of monodisperse giant unilamellar anchored vesicles using micropatterned hydrogel substrates. ACS omega, 4(5), 9393–9399.
  • Seidel, S., Dianat, G., and Gupta, M., 2016. Formation of porous polymer coatings on complex substrates using vapor phase precursors. Macromolecular materials and engineering, 301(4), 371–376.
  • Shaker, S., Gardouh, A.R., and Ghorab, M.M., 2017. Factors affecting liposomes particle size prepared by ethanol injection method. Research in pharmaceutical sciences, 12(5), 346.
  • Sharma, A., and Sharma, U.S., 1997. Liposomes in drug delivery: progress and limitations. International journal of pharmaceutics, 154(2), 123–140.
  • Shin, D., et al., 2017. Centrifuge-based membrane emulsification toward high-throughput generation of monodisperse liposomes, in: 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), IEEE, 123–126.
  • Shokri, M., et al., 2016. Effect of lyophilization on the size and polydispersity of unilamellar and multilamellar liposomes. Journal of nanotechnology and material sciences, 3, 37–40.
  • Shum, H.C., et al., 2008. Double emulsion templated monodisperse phospholipid vesicles. Langmuir, 24(15), 7651–7653.,
  • Shum, H.C., Thiele, J., and Kim, S.H., 2014. Microfluidic fabrication of vesicles, In: L. Wang, editor. Advances in transport phenomena, Cham: Springer, vol. 3, 1–28.
  • Skalko-Basnet, N., Pavelic, Z., and Becirevic-Lacan, M., 2000. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug development and industrial pharmacy, 26(12), 1279–1284.
  • Squires, T.M., and Quake, S.R., 2005. Microfluidics: fluid physics at the nanoliter scale. Reviews of modern physics, 77(3), 977.
  • Stachowiak, J.C., et al., 2009. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab on a chip, 9(14), 2003–2009.
  • Stachowiak, J.C., et al., 2008. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proceedings of the national academy of sciences, 105(12), 4697–4702.
  • Stein, H., et al., 2017. Production of isolated giant unilamellar vesicles under high salt concentrations. Frontiers in psychology, 8, 63.
  • Steinkühler, J., et al., 2018. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Scientific reports, 8(1), 11838.
  • Storm, G., and Crommelin, D.J.A., 1998. Liposomes: quo vadis? Pharmaceutical science & technology today, 1(1), 19–31.
  • Stroock, A.D., et al., 2002. Chaotic mixer for microchannels. Science, 295(5555), 647–651.
  • Sugiura, S., et al., 2008. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Langmuir, 24(9), 4581–4588.
  • Sundar, S.K., and Tirumkudulu, M.S., 2014. Synthesis of sub-100-nm liposomes via hydration in a packed bed of colloidal particles. Industrial and engineering chemistry research, 53(1), 198–205.
  • Suzuki, H., et al., 2008. Size characteristics of liposomes formed in a micro-tube. Journal of chemical engineering of Japan, 41(8), 739–743.
  • Sylvester, B., et al., 2018. Formulation optimization of freeze-dried long-circulating liposomes and in-line monitoring of the freeze-drying process using an NIR spectroscopy tool. Journal of pharmaceutical sciences, 107(1), 139–148.
  • Szoka, F., and Papahadjopoulos, D., 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the national academy of sciences, 75(9), 4194–4198.
  • Szoka, F., and Papahadjopoulos, D., 1980. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annual review of biophysics and bioengineering, 9(1), 467–508.
  • Tan, Y.C., et al., 2006. Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. Journal of the American chemical society, 128(17), 5656–5658.
  • Tanasescu, R., et al., 2018. Facile and rapid formation of giant vesicles from glass beads. Polymers, 10(1), 54.
  • Tarabella, G., et al., 2013. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochimica et biophysica acta (bba) – general subjects, 1830(9), 4374–4380.,
  • Taylor, P., et al., 2003. A novel technique for preparation of monodisperse giant liposomes. Chemical communications, 0, 1732–1733.
  • Teh, S.Y., et al., 2011. Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics, 5(4), 044113.
  • Teh, S.Y., et al., 2008. Droplet microfluidics. Lab on a chip, 8(2), 198–220.
  • Toledo, M.A.S., et al., 2012. Development of a recombinant fusion protein based on the dynein light chain LC8 for non-viral gene delivery. Journal of controlled release, 159(2), 222–231.
  • Torchilin, V.P., 2005. Recent advances with liposomes as pharmaceutical carriers. Nature reviews. Drug discovery, 4(2), 145.
  • Trucillo, P., Campardelli, R., and Reverchon, E., 2017. Supercritical CO2 assisted liposomes formation: optimization of the lipidic layer for an efficient hydrophilic drug loading. Journal of Co2 utilization, 18, 181–188.
  • Tsai, F.C., Stuhrmann, B., and Koenderink, G.H., 2011. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir, 27(16), 10061–10071.
  • Utada, A.S., et al., 2005. Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), 537–541.
  • van Swaay, D., and deMello, A., 2013. Microfluidic methods for forming liposomes. Lab on a chip, 13(5), 752–767.
  • Vemuri, S., and Rhodes, C.T., 1995. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica acta helvetiae, 70(2), 95–111.
  • Vladisavljević, G.T., et al., 2014. Production of liposomes using microengineered membrane and co-flow microfluidic device. Colloids and surfaces A: physicochemical and engineering aspects, 458, 168–177.
  • Wagner, A., and Vorauer-Uhl, K., 2010. Liposome technology for industrial purposes. Journal of drug delivery, 2011, 591325.
  • Wagner, A., et al., 2006. Gmp production of liposomes-a new industrial approach. Journal of liposome research, 16(3), 311–319.
  • Wagner, A., et al., 2002a. The crossflow injection technique: an improvement of the ethanol injection method. Journal of liposome research, 12(3), 259–270.
  • Wagner, A., et al., 2002b. Enhanced protein loading into liposomes by the multiple crossflow injection technique. Journal of liposome research, 12(3), 271–283.
  • Wagner, A., et al., 2002. Liposomes produced in a pilot scale: production, purification and efficiency aspects. European journal of pharmaceutics and biopharmaceutics, 54(2), 213–219.
  • Wang, Q., et al., 2017. Frequency-dependent electroformation of giant unilamellar vesicles in 3D and 2D microelectrode systems. Micromachines, 8(1), 24.
  • Wang, T., et al., 2006. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochimica et biophysica acta (bba) - biomembranes, 1758(2), 222–231.
  • Wang, T., et al., 2011. Preparation of submicron liposomes exhibiting efficient entrapment of drugs by freeze-drying water-in-oil emulsions. Chemistry and physics of lipids, 164(2), 151–157.
  • Wang, Z., et al., 2013. Electroformation and electrofusion of giant vesicles in a microfluidic device. Colloids and surfaces B: biointerfaces, 110, 81–87.
  • Weinberger, A., et al., 2013. Gel-assisted formation of giant unilamellar vesicles. Biophysical journal, 105(1), 154–164.
  • Wi, R., et al., 2012. Formation of liposome by microfluidic flow focusing and its application in gene delivery. Korea-Australia rheology journal, 24(2), 129–135.
  • Witkowska, A., Jablonski, L., and Jahn, R., 2018. A convenient protocol for generating giant unilamellar vesicles containing snare proteins using electroformation. Scientific reports, 8(1), 9422.
  • Xia, F., et al., 2011. Supercritical antisolvent-based technology for preparation of vitamin D3 proliposome and its characteristics. Chinese journal of chemical engineering, 19, 1039–1046.
  • Xia, F., et al., 2012. Preparation of lutein proliposomes by supercritical anti-solvent technique. Food hydrocolloids, 26(2), 456–463.
  • Yamada, A., et al., 2006. Spontaneous transfer of phospholipid-coated oil-in-oil and water-in-oil micro-droplets through an oil/water interface. Langmuir, 22(24), 9824–9828.
  • Yamashita, K., et al., 2010. Homogeneous and reproducible liposome preparation relying on reassembly in microchannel laminar flow. Chemical engineering journal, 165(1), 324–327.
  • Yang, K., et al., 2012. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method. Journal of liposome research, 22(1), 31–41.
  • Yin, F., et al., 2014. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor. International journal of nanomedicine, 9, 1665.
  • Zhao, C.X., 2013. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced drug delivery reviews, 65(11-12), 1420–1446.
  • Zhigaltsev, I.V., et al., 2012. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir, 28(7), 3633–3640.
  • Zhong, J., et al., 2013. Large scale preparation of midkine antisense oligonucleotides nanoliposomes by a cross-flow injection technique combined with ultrafiltration and high-pressure extrusion procedures. International journal of pharmaceutics, 441(1-2), 712–720.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.