214
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Sublingual delivery of chondroitin sulfate conjugated tapentadol loaded nanovesicles for the treatment of osteoarthritis

, ORCID Icon, &
Pages 30-44 | Received 15 Aug 2019, Accepted 02 Feb 2020, Published online: 02 Mar 2020

References

  • Bagari, R., et al., 2011. Chondroitin sulfate functionalized liposomes for solid tumor targeting. Journal of drug targeting, 19 (4), 251–257.
  • Bhatia, D., Bejarano, T., and Novo, M., 2013. Current interventions in the management of knee osteoarthritis. Journal of pharmacy and bioallied sciences, 5 (1), 30–38.
  • Bind, A.K., Gnanarajan, G., and Kothiyal, P., 2017. A review: sublingual route for systemic drug delivery. International journal of drug research and technology, 3, 5.
  • Bishnoi, M., et al., 2014. Aceclofenac-loaded chondroitin sulfate conjugated SLNs for effective management of osteoarthritis. Journal of drug targeting, 22 (9), 805–812.
  • Bishnoi, M., et al., 2016. Chondroitin sulfate: a focus on osteoarthritis. Glycoconjugate journal, 33 (5), 693–705.,
  • Briuglia, M.L., et al., 2015. Influence of cholesterol on liposome stability and on in vitro drug release. Drug delivery and translational research, 5 (3), 231–242.,
  • Chang, E.J., Choi, E.J., and Kim, K.H., 2016. Tapentadol: can it kill two birds with one stone without breaking windows? The Korean journal of pain, 29 (3), 153.
  • Chibowski, E., and Szcześ, A., 2016. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme. Adsorption, 22 (4–6), 755–765.
  • D’Souza, S., 2014. A review of in vitro drug release test methods for nano-sized dosage forms. Advances in pharmaceutics, 2014, 1–12.
  • Dali, M.M., et al., 2006. A rabbit model for sublingual drug delivery: comparison with human pharmacokinetic studies of propranolol, verapamil and captopril. Journal of pharmaceutical sciences., 95 (1), 37–44.,
  • Eddy, N.B., Leimbach, D.J.J.O.P., and Therapeutics, E., 1953. Synthetic analgesics. II. Dithienylbutenyl-and dithienylbutylamines. The journal of pharmacology and experimental therapeutics, 107 (3), 385–393.
  • Faria, J., et al., 2017. Effective analgesic doses of tramadol or tapentadol induce brain, lung and heart toxicity in Wistar rats. Toxicology, 385, 38–47.
  • Franchi, S., et al., 2017. Effect of tapentadol on splenic cytokine production in mice. Anesthesia & analgesia, 124 (3), 986–995.,
  • Fry, D.W., White, J.C., and Goldman, I.D. 1978. Rapid separation of low molecular weight solutes from liposomes without dilution. Analytical biochemistry, 90, 809–815.
  • Fujimoto, T., et al., 2001. CD44 binds a chondroitin sulfate proteoglycan, aggrecan. International immunology, 13 (3), 359–366.
  • Grimaldi, N., et al., 2016. Lipid-based nanovesicles for nanomedicine. Chemical society reviews, 45 (23), 6520–6545.
  • Haywood, A.R., Hathway, G.J., and Chapman, V., 2018. Differential contributions of peripheral and central mechanisms to pain in a rodent model of osteoarthritis. Scientific reports, 8 (1), 7122.
  • Isacchi, B., et al., 2017. Liposomal formulation to increase stability and prolong antineuropathic activity of verbascoside. Planta medica, 83, 412–419.
  • Jain, A., and Jain, S.K., 2016a. In vitro release kinetics model fitting of liposomes: an insight. Chemistry and physics of lipids, 201, 28–40.
  • Jain, A., and Jain, S.K., 2016b. Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug development and industrial pharmacy, 42 (1), 136–149.
  • Jain, A., and Jain, S. K., 2017. Chapter 9. Application potential of engineered liposomes in tumor targeting. In: A.M. Grumezescu, ed. Multifunctional systems for combined delivery, biosensing and diagnostics. Amsterdam, The Netherlands: Elsevier, 171–191.
  • Jain, A., and Jain, S.K., 2018. Stimuli-responsive smart liposomes in cancer targeting. Current drug targets, 19 (3), 259–270.
  • Jain, A., et al., 2013. Dual drug delivery using “smart” liposomes for triggered release of anticancer agents. Journal of nanoparticle research, 15 (7), 1772.
  • Jain, A., Hurkat, P., and Jain, S.K., 2019. Development of liposomes using formulation by design: basics to recent advances. Chemistry and physics of lipids, 224, 104764.
  • Jain, A., et al., 2018. Nanocarrier based advances in drug delivery to tumor: an overview. Current drug targets, 19 (13), 1498–1518.
  • Jain, A. J., and Sanjay, K., 2016. Liposomes in cancer therapy. In: J. Carlos, ed. Nanocarrier systems for drug delivery. New York: Nova Science Publishers, 1–42.
  • Jain, S. K., and Jain, A., 2016c. Ligand mediated drug targeted liposomes. In: A. Samad, S. Beg, I. Nazish, eds. Liposomal delivery systems: advances and challenges. London, UK: Future Medicine Ltd.
  • Jain, A., and Jain, S. K., 2016d. Chapter 1. Liposomes in cancer therapy. In: J. Carlos, ed. Nanocarrier systems for drug delivery. New York: Nova Science Publishers, 1–42. https://www.researchgate.net/profile/Ankit_Jain44/publication/309534086_Liposomes_in_Cancer_Therapy/links/5cba0abba6fdcc1d49a0ff74/Liposomes-in-Cancer-Therapy.pdf#page=11
  • Khalil, R.M., et al., 2017. Enhancement of lomefloxacin Hcl ocular efficacy via niosomal encapsulation: In vitro characterization and in vivo evaluation. Journal of liposome research, 27 (4), 312–323.,
  • Khwaldia, K., 2019. Chondroitin and glucosamine. Nonvitamin and nonmineral nutritional supplements. Amsterdam, The Netherlands: Elsevier, 27–35.
  • Kim, N., et al., 2016. A prospective evaluation of opioid utilization after upper-extremity surgical procedures: identifying consumption patterns and determining prescribing guidelines. The journal of bone and joint surgery, 98 (20), e89.
  • Kraft, J.C., et al., 2014. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. Journal of pharmaceutical sciences, 103 (1), 29–52.
  • Kumari, A., et al., 2018. Eudragit S100 coated microsponges for colon targeting of prednisolone. Drug development and industrial pharmacy, 44 (6), 902–913.
  • Langford, R.M., et al., 2016. Is tapentadol different from classical opioids? A review of the evidence. British journal of pain, 10, 217–221.
  • Lee, S.-Y., et al., 2018. The therapeutic effect of STAT3 signaling-suppressed MSC on pain and articular cartilage damage in a rat model of monosodium iodoacetate-induced osteoarthritis. Frontiers in immunology, 9, 2881.
  • Lin, W.J., and Lee, W.C., 2018. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. International journal of nanomedicine, 13, 3989–4002.
  • Liu, D.-Z., et al., 2000. Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloids & surfaces A, 172, 57–67.
  • Liu, P., et al., 2019. Preparation, characterisation and in vitro and in vivo evaluation of CD44-targeted chondroitin sulfate-conjugated doxorubicin PLGA nanoparticles. Carbohydrate polymers, 213, 17–26.
  • Liu, Y.-S., et al., 2014. Preparation of chondroitin sulfate-g-poly (ε-caprolactone) copolymers as a CD44-targeted vehicle for enhanced intracellular uptake. Molecular pharmaceutics, 11 (4), 1164–1175.,
  • Maheshwari, R.G., et al., 2012. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi pharmaceutical journal, 20 (2), 161–170.,
  • Mishra, R. K., et al., 2019. Efficient nanocarriers for drug-delivery systems: types and fabrication. Nanocarriers for drug delivery. Amsterdam, The Netherlands: Elsevier, 1–41.
  • Montell, E., Pelletier, J.-P., and Martel-Pelletier, J., 2019. Chondroitin sulfate pharmacological activity from four different sources in human osteoarthritic cartilage. The FASEB journal, 33, lb383–lb383.
  • Mura, P., et al., 2018. A preliminary study for the development and optimization by experimental design of an in vitro method for prediction of drug buccal absorption. International journal of pharmaceutics, 547 (1–2), 530–536.
  • Panchagnula, R., et al., 2001. Transdermal delivery of naloxone: effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. International journal of pharmaceutics, 219, 95–105.
  • Patil, G.B., and Surana, SJ. 2017. Bio-fabrication and statistical optimization of polysorbate 80 coated chitosan nanoparticles of tapentadol hydrochloride for central antinociceptive effect: in vitro–in vivo studies. Artificial cells, nanomedicine and biotechnology, 45, 505–514.
  • Pentak, D., et al., 2016. Methotrexate and cytarabine—loaded nanocarriers for multidrug cancer therapy. Spectroscopic study. Molecules, 21 (12), 1689.
  • Pitcher, T., Sousa-Valente, J., and Malcangio, M. 2016. The monoiodoacetate model of osteoarthritis pain in the mouse. Journal of visualized experiments. 111, e53746.
  • Prajapati, S.K., et al., 2019. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. International journal of biological macromolecules, 123, 691–703.
  • Putri, D.C.A., Dwiastuti, R., Marchaban, M., and Nugroho, A.K. 2017. Optimization of mixing temperature and sonication duration in liposome preparation. Journal of pharmaceutical sciences & community, 14, 79–85.
  • Ramaswamy, S., Chang, S., and Mehta, V.J.A., 2015. Tapentadol – the evidence so far. Anesthesia, 70, 518–522.
  • Ravar, F., et al., 2016. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. Journal of controlled release, 229, 10–22.
  • Restaino, O.F., et al., 2019. European chondroitin sulfate and glucosamine food supplements: a systematic quality and quantity assessment compared to pharmaceuticals. Carbohydrate polymers, 222, 114984.
  • Romualdi, P., et al., 2019. Pharmacological rationale for tapentadol therapy: a review of new evidence. Journal of pain research, 12, 1513–1520.
  • Saraf, S., et al., 2016. Topotecan liposomes: a visit from a molecular to a therapeutic platform. Critical reviews in therapeutic drug carrier systems, 33 (5), 401–432.
  • Schiraldi, C., Cimini, D., and De Rosa, M., 2010. Production of chondroitin sulfate and chondroitin. Applied microbiology and biotechnology, 87 (4), 1209–1220.
  • Singh, D.R., et al., 2013. Tapentadol hydrochloride: a novel analgesic. Saudi journal of anaesthesia, 7 (3), 322.
  • Singh, Y., et al., 2017. Nanoemulsion: concepts, development and applications in drug delivery. Journal of controlled release, 252, 28–49.
  • Sobue, Y., et al., 2019. Inhibition of CD44 intracellular domain production suppresses bovine articular chondrocyte de-differentiation induced by excessive mechanical stress loading. Scientific reports, 9 (1), 10.
  • Sorensen, E.N., Weisman, G., and Vidaver, G.A., 1977. A sephadex column procedure for measuring uptake and loss of low molecular weight solutes from small, lipid-rich vesicles. Analytical biochemistry, 82 (2), 376–384.
  • Sydykov, B., et al., 2018. Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions. Biochimica et Biophysica Acta (BBA) biomembranes, 1860 (2), 467–474.
  • Terenzi, R., et al., 2017. FRI0070 Angiotensin II type 2 receptor (AT2R) is overexpressed in rheumatoid arthritis and osteoarthritis synovium and increases steadily with inflammatory stimuli: a potential new target for pain and anti-inflammatory therapies. Rheumatoid arthritis, 76, 504.
  • Thudium, C.S., et al., 2019. Protein biomarkers associated with pain mechanisms in osteoarthritis. Journal of proteomics, 190, 55–66.
  • Turdean, S.G., et al., 2017. Histopathological evaluation and expression of the pluripotent mesenchymal stem cell-like markers CD105 and CD44 in the synovial membrane of patients with primary versus secondary hip osteoarthritis. Journal of investigative medicine, 65 (2), 363–369.
  • Verma, A., et al., 2019. Systematic optimization of cationic surface engineered mucoadhesive vesicles employing Design of Experiment (DoE): a preclinical investigation. International journal of biological macromolecules, 133, 1142–1155.
  • Vinothini, K., and Rajan, M., 2019. Mechanism for the nano-based drug delivery system. Characterization and biology of nanomaterials for drug delivery. Amsterdam, The Netherlands: Elsevier, 219–263.
  • Zhu, H., et al., 2013. Nanovesicles system for rapid-onset sublingual delivery containing sodium tanshinone IIA sulfonate: in vitro and in vivo evaluation. Journal of pharmaceutical science, 102, 2332–2340.
  • Zylberberg, C., and Matosevic, S.J.D.D., 2016. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug delivery, 23, 3319–3329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.