1,012
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Vesicle formation mechanisms: an overview

ORCID Icon & ORCID Icon
Pages 90-111 | Received 10 Oct 2019, Accepted 09 Feb 2020, Published online: 03 Mar 2020

References

  • Angelova, M.I., and Dimitrov, D.S., 1986. Liposome electroformation. Faraday discussions of the chemical society, 81, 303–311.
  • Aratono, M., et al., 2007. Spontaneous vesicle formation of single chain and double chain cationic surfactant mixtures. The journal of physical chemistry B, 111 (1), 107–115.
  • Arriaga, L.R., et al., 2014. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small, 10 (5), 950–956.
  • Bagger-Jörgensen, H., and Olsson, U., 1996. Experimental study of undulation forces in a nonionic lamellar phase. Langmuir, 12 (17), 4057–4059.
  • Balbino, T.A., et al., 2013. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chemical engineering journal, 226, 423–433.
  • Bangham, A.D., and Dawson, R.M.C., 1958. Control of lecithinase activity by the electrophoretic charge on its substrate surface. Nature, 182 (4645), 1292–1293.
  • Bangham, A.D., and Dawson, R.M.C., 1959. The relation between the activity of a lecithinase and the electrophoretic charge of the substrate. Biochemical journal, 72 (3), 486–492.
  • Bangham, A.D., Standish, M.M., and Watkins, J.C., 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of molecular biology, 13 (1), 238–252.
  • Batzri, S., and Korn, E.D., 1973. Single bilayer liposomes prepared without sonication. Biochimica et biophysica acta (BBA) – biomembranes, 298 (4), 1015–1019.
  • Beblik, G., Servuss, R.M., and Helfrich, W., 1985. Bilayer bending rigidity of some synthetic lecithins. Journal de physique, 46 (10), 1773–1778.
  • Ben-Shaul, A., 1995. Molecular theory of chain packing, elasticity and lipid-protein interaction in lipid bilayers. In: R. Lipowsky and E. Sackmann, eds. Structure and dynamics of membranesfrom cells to vesicles, vol. 1. North-Holland: Handbook of Biological Physics, 359–401.
  • Bergmeier, M., et al., 1998. Behavior of a charged vesicle system under the influence of a shear gradient: a microstructural study. The journal of physical chemistry B, 102 (16), 2837–2840.
  • Bergmeier, M., et al., 1999. Behavior of ionically charged lamellar systems under the influence of a shear field. The Journal of physical chemistry B, 103 (9), 1605–1617.
  • Bergström, L.M., 2007. Bending energetics of tablet-shaped micelles: a novel approach to rationalize micellar systems. ChemPhysChem, 8 (3), 462–472.
  • Bergström, M., 1996. Thermodynamics of vesicle formation from a mixture of anionic and cationic surfactants. Langmuir, 12 (10), 2454–2463.
  • Bhattacharya, S., and Haldar, S., 2000. Interactions between cholesterol and lipids in bilayer membranes. role of lipid headgroup and hydrocarbon chain–backbone linkage. Biochimica et biophysica acta (BBA)–biomembranes, 1467 (1), 39–53.
  • Billerit, C., et al., 2012. Formation of giant unilamellar vesicles from spin-coated lipid films by localized IR heating. Soft Matter, 8 (42), 10823–10826.
  • Bloom, M., Evans, E., and Mouritsen, O.G., 1991. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Quarterly reviews of biophysics, 24 (3), 293–397.
  • Blosser, M.C., Horst, B.G., and Keller, S.L., 2016. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft matter, 12 (35), 7364–7371.
  • Boal, D., 2012. Mechanics of the cell, 2nd ed. Cambridge: Cambridge University Press.
  • Bobenko, A.I., Pottmann, H., and Wallner, J., 2010. A curvature theory for discrete surfaces based on mesh parallelity. Mathematische annalen, 348 (1), 1–24.
  • Bobenko, A. I., et al., 2008. Discrete differential geometry, Basel: Birkhäuser Basel.
  • Bozzuto, G., and Molinari, A., 2015. Liposomes as nanomedical devices. International journal of nanomedicine, 10, 975–999.
  • Brandl, M., 2007. Vesicular phospholipid gels: a technology platform. Journal of liposome research, 17 (1), 15–26.
  • Brochard, F., and Lennon, J.F., 1975. Frequency spectrum of the flicker phenomenon in erythrocytes. Journal de Physique, 36 (11), 1035–1047.
  • Buehler, L., 2015. Cell membranes. ‎New York: Garland Science.
  • Carpineti, M., and Giglio, M., 1993. Aggregation phenomena. Advances in colloid and interface science, 46, 73–90.
  • Chen, I.A., and Szostak, J.W., 2004. A kinetic study of the growth of fatty acid vesicles. Biophysical journal, 87 (2), 988–998.
  • Constantin, D., et al., 2005. Electric field unbinding of solid-supported lipid multilayers. The European physical journal E, 18 (3), 273–278.
  • De Gennes, P.G., and Taupin, C., 1982. Microemulsions and the flexibility of oil/water interfaces. The journal of physical chemistry, 86 (13), 2294–2304.
  • Deserno, M., 2015. Fluid lipid membranes: from differential geometry to curvature stresses. Chemistry and physics of lipids, 185, 11–45.
  • Diat, O., and Roux, D., 1993. Preparation of monodisperse multilayer vesicles of controlled size and high encapsulation ratio. Journal de physique ii, 3 (1), 9–14.
  • Diat, O., Roux, D., and Nallet, F., 1993. Effect of shear on a lyotropic lamellar phase. Journal de physique ii, 3 (9), 1427–1452.
  • Dichello, G.A., and Sarker, D.K., 2017. Encapsulation of lethal, functional, and therapeutic medicinal nanoparticles and quantum dots for the improved diagnosis and treatment of infection. In: A. Ficai and A.M. Grumezescu, eds. Nanostructures for Antimicrobial Therapy, chap, 27. Amsterdam: Elsevier, 597–622.
  • Dimova, R., 2014. Recent developments in the field of bending rigidity measurements on membranes. Advances in colloid and interface science, 208, 225–234.
  • Discher, D.E., and Eisenberg, A., 2002. Polymer vesicles. Science, 297 (5583), 967–973.
  • do Carmo, M. P., 1976. Differential geometry of curves and surfaces, Englewood Cliffs, New Jersey: Prentice-Hall.
  • Doi, M., and Edwards, S. F. 1988. The theory of polymer dynamics, vol. 73. New York: Oxford University Press.
  • Egelhaaf, S.U., and Schurtenberger, P., 1999. Micelle-to-vesicle transition: a time-resolved structural study. Physical review letters, 82 (13), 2804–2807.
  • Eicher, B., et al., 2018. Intrinsic curvature-mediated transbilayer coupling in asymmetric lipid vesicles. Biophysical journal, 114 (1), 146–157.
  • Escalante, J.I., et al., 2000. Shear-induced transition of originally undisturbed lamellar phase to vesicle phase. Langmuir, 16 (23), 8653–8663.
  • Escalante, J.I., and Hoffmann, H., 2000. Non-linear rheology and flow-induced transition of a lamellar-to-vesicle phase in ternary systems of alkyldimethyl oxide/alcohol/water. Rheologica acta, 39 (3), 209–214.
  • Evans, E.A., 1974. Bending resistance and chemically induced moments in membrane bilayers. Biophysical journal, 14 (12), 923–931.
  • Evans, E., and Needham, D., 1987. Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. The journal of physical chemistry, 91 (16), 4219–4228.
  • Evans, D.F., and Ninham, B.W., 1986. Molecular forces in the self-organization of amphiphiles. The journal of physical chemistry, 90 (2), 226–234.
  • Evans, E., and Skalak, R., 1980. Mechanics and thermodynamics of biomembranes, Boca Raton: CRC Press.
  • Fischer, T.H., and Lasic, D.D., 1984. A detergent depletion technique for the preparation of small vesicles. Molecular crystals and liquid crystals, 102 (5), 141–153.
  • Frank, F.C., 1958. I. Liquid crystals. On the theory of liquid crystals. Discussions of the faraday society, 25, 19–28.
  • Fritz, G., Wagner, N.J., and Kaler, E.W., 2003. Formation of multilamellar vesicles by oscillatory shear. Langmuir, 19 (21), 8709–8714.
  • Fromherz, P., 1983. Lipid-vesicle structure: size control by edge-active agents. Chemical physics letters, 94 (3), 259–266.
  • Fromherz, P., and Ruppel, D., 1985. Lipid vesicle formation: the transition from open disks to closed shells. FEBS letters, 179 (1), 155–159.
  • Funakoshi, K., Suzuki, H., and Takeuchi, S., 2007. Formation of giant lipid vesiclelike compartments from a planar lipid membrane by a pulsed jet flow. Journal of the American chemical society, 129 (42), 12608–12609.
  • Gabriel, N.E., and Roberts, M.F., 1984. Spontaneous formation of stable unilamellar vesicles. Biochemistry, 23 (18), 4011–4015.
  • Gebicki, J., and Hicks, M., 1976. Preparation and properties of vesicles enclosed by fatty acid membranes. Chemistry and physics of lipids, 16 (2), 142–160.
  • Genç, R., Ortiz, M., and O′Sullivan, C.K., 2009. Curvature-tuned preparation of nanoliposomes. Langmuir, 25 (21), 12604–12613.
  • Gradzielski, M., 2003. Kinetics of morphological changes in surfactant systems. Current opinion in colloid and interface science, 8 (4–5), 337–345.
  • Grillo, I., Kats, E.I., and Muratov, A.R., 2003. Formation and growth of anionic vesicles followed by small-angle neutron scattering. Langmuir, 19 (11), 4573–4581.
  • Guida, V., 2010. Thermodynamics and kinetics of vesicles formation processes. Advances in colloid and interface science, 161 (1–2), 77–88.
  • Harbich, W., and Helfrich, W., 1984. The swelling of egg lecithin in water. Chemistry and physics of lipids, 36 (1), 39–63.
  • Has, C., Phapal, S.M., and Sunthar, P., 2018. Rapid single-step formation of liposomes by flow assisted stationary phase interdiffusion. Chemistry and physics of lipids, 212, 144–151.
  • Has, C., and Sunthar, P., 2019. A comprehensive review on recent preparation techniques of liposomes. Journal of liposome research, 7, 1–30.
  • Hauser, H., 1982. Methods of preparation of lipid vesicles: assessment of their suitability for drug encapsulation. Trends in pharmacological sciences, 3, 274–277.
  • Hauser, H., 1989. Mechanism of spontaneous vesiculation. Proceedings of the national academy of sciences, 86 (14), 5351–5355.
  • Heimburg, T., 2007. Membrane structure. In: Thermal Biophysics of Membranes. Hoboken: John Wiley and Sons, 15–27.
  • Helfrich, W., 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für naturforschung C, 28 (11–12), 693–703.
  • Helfrich, W., 1974. The size of bilayer vesicles generated by sonication. Physics letters A, 50 (2), 115–116.
  • Helfrich, W., 1986. Size distributions of vesicles: the role of the effective rigidity of membranes. Journal de physique, 47 (2), 321–329.
  • Helfrich, W., and Harbich, W., 1987. Equilibrium configurations of fluid membranes. In: J. Meunier, D. Langevin, and N. Boccara, eds. Physics of Amphiphilic Layers. Springer Berlin Heidelberg: Springer Proceedings in Physics, vol. 21, 58–63.
  • Henriksen, J.R., and Ipsen, J.H., 2004. Measurement of membrane elasticity by micro-pipette aspiration. The European physical journal E, 14 (2), 149–167.
  • Hood, R.R., and DeVoe, D.L., 2015. High-throughput continuous flow production of nanoscale liposomes by microfluidic vertical flow focusing. Small, 11 (43), 5790–5799.
  • Horger, K.S., et al., 2009. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. Journal of the American chemical society, 131 (5), 1810–1819.
  • Hu, M., Briguglio, J.J., and Deserno, M., 2012. Determining the gaussian curvature modulus of lipid membranes in simulations. Biophysical journal, 102 (6), 1403–1410.
  • Hu, P.C., Li, S., and Malmstadt, N., 2011. Microfluidic fabrication of asymmetric giant lipid vesicles. ACS applied materials and interfaces, 3 (5), 1434–1440.
  • Isambert, H., 1998. Understanding the electroporation of cells and artificial bilayer membranes. Physical review letters, 80 (15), 3404–3407.
  • Israelachvili, J., 1994. The science and applications of emulsions – an overview. Colloids and surfaces A: physicochemical and engineering aspects, 91, 1–8.
  • Israelachvili, J.N., 1981. Physical principles and modes of interaction of membrane lipids and amphiphiles. In: G. Shockman and W. AJ, eds. Chemistry and biological activities of bacterial surface amphiphiles. Amsterdam: Elsevier, 119–123.
  • Israelachvili, J.N., 1985. Intermolecular and surface forces: with applications to colloidal and biological systems, London: Colloid Science Series, Academic Press London.
  • Israelachvili, J.N., 2011. Intermolecular and surface forces, 3rd ed. London: Academic Press.
  • Israelachvili, J.N., Marčelja, S., and Horn, R.G., 1980. Physical principles of membrane organization. Quarterly reviews of biophysics, 13 (2), 121–200.
  • Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W., 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the chemical society, faraday transactions 2, 72, 1525–1568.
  • Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W., 1977. Theory of self-assembly of lipid bilayers and vesicles. Biochimica et biophysica acta (BBA) – biomembranes, 470 (2), 185–201.
  • Jaafar-Maalej, C., Charcosset, C., and Fessi, H., 2011. A new method for liposome preparation using a membrane contactor. Journal of liposome research, 21 (3), 213–220.
  • Jahn, A., et al., 2013. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation. Langmuir, 29 (5), 1717–1723.
  • Jahn, A., et al., 2004. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. Journal of the American chemical society, 126 (9), 2674–2675.
  • Jiang, F.Y., Bouret, Y., and Kindt, J.T., 2004. Molecular dynamics simulations of the lipid bilayer edge. Biophysical journal, 87 (1), 182–192.
  • Joshi, S., et al., 2016. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. International journal of pharmaceutics, 514 (1), 160–168.
  • Jülicher, F., 1996. The morphology of vesicles of higher topological genus: conformal degeneracy and conformal modes. Journal de physique ii, 6 (12), 1797–1824.
  • Jung, H., et al., 2001. The origins of stability of spontaneous vesicles. Proceedings of the national academy of sciences, 98 (4), 1353–1357.
  • Kagawa, Y., and Racker, E., 1971. Partial resolution of the enzymes catalyzing photophosphorylation. Reconstitution of vesicles catalyzing phosphate adenosin triphosphate exchange. Journal of biological chemistry, 246 (17), 5477–5487.
  • Kaler, E.W., et al., 1989. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245 (4924), 1371–1374.
  • Karatekin, E., et al., 2003. Cascades of transient pores in giant vesicles: line tension and transport. Biophysical journal, 84 (3), 1734–1749.
  • Kastner, E., et al., 2014. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. International journal of pharmaceutics, 477 (1–2), 361–368.
  • Kastner, E., et al., 2015. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. International journal of pharmaceutics, 485 (1–2), 122–130.
  • Kimura, N., et al., 2018. Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega, 3 (5), 5044–5051.
  • Kozlov, M.M., Lichtenberg, D., and Andelman, D., 1997. Shape of phospholipid/surfactant mixed micelles: cylinders or disks? Theoretical analysis. The journal of physical chemistry B, 101 (33), 6600–6606.
  • Kresse, K.M., et al., 2016. Novel application of cellulose paper as a platform for the macromolecular self-assembly of biomimetic giant liposomes. ACS applied materials and interfaces, 8 (47), 32102–32107.
  • Kumar, V.V., 1991. Complementary molecular shapes and additivity of the packing parameter of lipids. Proceedings of the national academy of sciences of sciences, 88 (2), 444–448.
  • Kumaran, V., 2000. Instabilities due to charge-density-curvature coupling in charged membranes. Physical review letters, 85 (23), 4996–4999.
  • Kuzmin, P.I., et al., 2001. A quantitative model for membrane fusion based on low-energy intermediates. Proceedings of the national academy of sciences, 98 (13), 7235–7240.
  • Kwok, R., and Evans, E., 1981. Thermoelasticity of large lecithin bilayer vesicles. Biophysical journal, 35 (3), 637–652.
  • Lasch, J., Weissig, V., and Brandl, M., 2003. Preparation of liposomes. In: V. Torchilin and V. Weissig, eds. Liposomes: a practical approach. Oxford, UK: Oxford University Press, vol. 2, chap. 1, 3–30.
  • Lasic, D., 1995. Mechanisms of liposome formation. Journal of liposome research, 5 (3), 431–441.
  • Lasic, D.D., 1982. A molecular model for vesicle formation. Biochimica et biophysica acta (BBA)-biomembranes, 692 (3), 501–502.
  • Lasic, D.D., 1987. A general model of vesicle formation. Journal of theoretical biology, 124 (1), 35–41.
  • Lasic, D.D., 1988a. The mechanism of vesicle formation. Biochemical journal, 256 (1), 1–11.
  • Lasic, D.D., 1988b. The spontaneous formation of unilamellar vesiscles. Journal of colloid and interface science, 124 (2), 428–435.
  • Lasic, D.D., 1993. Liposomes: from Physics to applications, 1st ed. Amsterdam: Elsevier.
  • Lasic, D.D., 1994. Sterically stabilized vesicles. Angewandte chemie international edition in english, 33 (17), 1685–1698.
  • Lasic, D.D., 2008. Giant vesicles: a historical introduction. In: P.L. Luisi and P. Walde, eds. Giant Vesicles, vol. 22. Hoboken: John Wiley and Sons.
  • Lasic, D.D., and Barenholz, Y., 1996. Handbook of nonmedical applications of liposomes: theory and basic sciences, vol. 1, Boca Raton: CRC Press.
  • Lasic, D., Belic, A., and Valentincic, T., 1988. A new method for the instant preparation of large unilamellar vesicles. Journal of the American chemical society, 110 (3), 970–971.
  • Lasic, D.D., and Martin, F.J., 1990. On the mechanism of vesicle formation. Journal of membrane science, 50 (2), 215–222.
  • Lehmann, O., 1911. Die neue welt der flüssigen kristalle. Leipzig: Akademische Verlagsgesellschaft m.b.H.
  • Leng, J., Egelhaaf, S., and Cates, M., 2002. Kinetic pathway of spontaneous vesicle formation. Europhysics letters (Epl), 59 (2), 311–317.
  • Leng, J., Egelhaaf, S.U., and Cates, M.E., 2003. Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophysical journal, 85 (3), 1624–1646.
  • Li, C., and Deng, Y., 2004. A novel method for the preparation of liposomes: freeze drying of monophase solutions. Journal of pharmaceutical sciences, 93 (6), 1403–1414.
  • Lichtenberg, D., and Barenholz, Y., 1988. Liposomes: preparation, characterization, and preservation. In: D. Glick, ed. Methods of Biochemical Analysis, vol. 33, chap. 7. Hoboken: Wiley Online Library, 337–462.
  • Lipowsky, R., 1992. Budding of membranes induced by intramembrane domains. Journal de physique ii, 2 (10), 1825–1840.
  • Liu, Y., and Nagle, J.F., 2004. Diffuse scattering provides material parameters and electron density profiles of biomembranes. Physical review E, 69 (4), 040901.
  • Lorenzen, S., Servuss, R.M., and Helfrich, W., 1986. Elastic torques about membrane edges: a study of pierced egg lecithin vesicles. Biophysical journal, 50 (4), 565–572.
  • Luo, M., et al., 2009. Dynamic behaviour of a nanoscale-patterned phospholipid thin film on mica and silicon studied by atomic force microscopy. Thin solid films, 517 (5), 1765–1769.
  • MacDonald, R.C., Jones, F.D., and Qui, R., 1994. Fragmentation into small vesicles of dioleoylphosphatidylcholine bilayers during freezing and thawing. Biochimica et biophysica acta (BBA) – biomembranes, 1191 (2), 362–370.
  • Malinin, V.S., and Lentz, B.R., 2004. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses. Biophysical journal, 86 (5), 2951–2964.
  • Marsh, D., 2006. Elastic curvature constants of lipid monolayers and bilayers. Chemistry and physics of lipids, 144 (2), 146–159.
  • Massing, U., Cicko, S., and Ziroli, V., 2008. Dual asymmetric centrifugation (DAC)-A new technique for liposome preparation. Journal of controlled release, 125 (1), 16–24.
  • Maulucci, G., et al., 2005. Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophysical journal, 88 (5), 3545–3550.
  • May, S., 1996. Curvature elasticity and thermodynamic stability of electrically charged membranes. The journal of chemical physics, 105 (18), 8314–8323.
  • McCalden, T.A., 1990. Particulate systems for drug delivery to the lung. Advanced drug delivery reviews, 5 (3), 253–263.
  • Mitchell, D.J., and Ninham, B.W., 1981. Micelles, vesicles and microemulsions. Journal of the chemical society, faraday transactions 2, 77 (4), 601–629.
  • Mora, N.L., et al., 2014. Preparation of size tunable giant vesicles from cross-linked dextran (ethylene glycol) hydrogels. Chemical communications, 50 (16), 1953–1955.
  • Morgan, J.D., Johnson, C.A., and Kaler, E.W., 1997. Polymerization of equilibrium vesicles. Langmuir, 13 (24), 6447–6451.
  • Morita, M., et al., 2015. Droplet-shooting and size-filtration (dssf) method for synthesis of cell-sized liposomes with controlled lipid compositions. ChemBioChem, 16 (14), 2029–2035.
  • Mosley, G.L., Yamanishi, C.D., and Kamei, D.T., 2013. Mathematical modeling of vesicle drug delivery systems 1: vesicle formation and stability along with drug loading and release. Journal of laboratory automation, 18 (1), 34–45.
  • Motta, I., et al., 2015. Formation of giant unilamellar proteo-liposomes by osmotic shock. Langmuir, 31 (25), 7091–7099.
  • Nagarajan, R., 2002. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir, 18 (1), 31–38.
  • Naghdi, P. M., 1973. The theory of shells and plates. In: C. Truesdell, ed. Linear theories of elasticity and thermoelasticity. Berlin Heidelberg: Springer, 425–640.
  • Needham, D., and Evans, E., 1988. Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 °C below to 10 °C above the liquid crystal-crystalline phase transition at 24 °C. Biochemistry, 27 (21), 8261–8269.
  • Norman, A.I., et al., 2006. Spontaneous formation of vesicles of diblock copolymer EO6BO11 in water: a SANS study. The journal of physical chemistry B, 110 (1), 62–67.
  • Nourian, Z., Roelofsen, W., and Danelon, C., 2012. Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angewandte chemie, 124 (13), 3168–3172.
  • Nozaki, Y., Lasic, D., and Tanford, J., 1982. Size analysis of phospholipid vesicle preparations. Science, 217 (4557), 366–367.
  • Oberdisse, J., 1998. Transition from small to big charged unilamellar vesicles. The European physical journal B, 3 (4), 463–469.
  • Oku, N., and MacDonald, R.C., 1983. Solubilization of phospholipids by chaotropic ion solutions. The journal of biological chemistry, 258 (14), 8733–8738.
  • Olson, F., et al., 1979. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochimica et biophysica acta (BBA) – biomembranes, 557 (1), 9–23.
  • Ota, S., Yoshizawa, S., and Takeuchi, S., 2009. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angewandte chemie international edition, 48 (35), 6533–6537.
  • Otake, K., et al., 2006. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir, 22 (6), 2543–2550.
  • Pabst, G., et al., 2014. Liposomes, lipid bilayers and model membranes: from basic research to application. Boca Raton: CRC Press.
  • Patil, Y.P., and Jadhav, S., 2014. Novel methods for liposome preparation. Chemistry and physics of lipids, 177, 8–18.
  • Pautot, S., Frisken, B.J., and Weitz, D.A., 2003. Production of unilamellar vesicles using an inverted emulsion. Langmuir, 19 (7), 2870–2879.
  • Petrov, A. G., 1999. The lyotropic state of matter: molecular physics and living matter physics. Boca Raton: CRC Press.
  • Petrov, A.G., and Bivas, I., 1984. Elastic and flexoelectic aspects of out-of-plane fluctuations in biological and model membranes. Progress in surface science, 16 (4), 389–511.
  • Phapal, S.M., Has, C., and Sunthar, P., 2017. Spontaneous formation of single component liposomes from a solution. Chemistry and physics of lipids, 205, 25–33.
  • Phapal, S.M., and Sunthar, P., 2013. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases. Chemistry and physics of lipids, 172, 20–30.
  • Pidgeon, C., Hunt, A., and Dittrich, K., 1986. Formation of multilayered vesicles from water/organic-solvent (w/o) emulsions: theory and practice. Pharmaceutical research, 03 (1), 23–34.
  • Pidgeon, C., et al., 1987. Multilayered vesicles prepared by reverse-phase evaporation: liposome structure and optimum solute entrapment. Biochemistry, 26 (1), 17–29.
  • Pincus, P., Joanny, J.F., and Andelman, D., 1990. Electrostatic interactions, curvature elasticity, and steric repulsion in multimembrane systems. Europhysics letters (Epl), 11 (8), 763–768.
  • Politano, T.J., et al., 2010. AC-electric field dependent electroformation of giant lipid vesicles. Colloids and surfaces B: biointerfaces, 79 (1), 75–82.
  • Pontani, L.L., et al., 2009. Reconstitution of an actin cortex inside a liposome. Biophysical journal, 96 (1), 192–198.
  • Pott, T., Bouvrais, H., and Méléard, P., 2008. Giant unilamellar vesicle formation under physiologically relevant conditions. Chemistry and physics of lipids, 154 (2), 115–119.
  • Rawicz, W., et al., 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophysical journal, 79 (1), 328–339.
  • Reeves, J.P., and Dowben, R.M., 1969. Formation and properties of thin-walled phospholipid vesicles. Journal of cellular physiology, 73 (1), 49–60.
  • Regev, O., and Guillemet, F., 1999. Various bilayer organizations in a single-tail nonionic surfactant: unilamellar vesicles, multilamellar vesicles, and flat-stacked lamellae. Langmuir, 15 (13), 4357–4364.
  • Richtering, W., 2001. Rheology and shear induced structures in surfactant solutions. Current opinion in colloid and interface science, 6 (5–6), 446–450.
  • Robertson, R.N., 1983. Lively membranes. Cambridge: Cambridge University Press.
  • Robinson, B.H., Bucak, S., and Fontana, A., 2000. On the concept of driving force applied to micelle and vesicle self-assembly. Langmuir, 16 (22), 8231–8237.
  • Russel, W.B., Saville, D.A., and Schowalter, W.R., 1992. Colloidal dispersions. Cambridge: Cambridge University Press.
  • Sackmann, E., 1994. Membrane bending energy concept of vesicle-and cell-shapes and shape-transitions. FEBS letters, 346 (1), 3–16.
  • Sackmann, E., Duwe, H.P., and Engelhardt, H., 1986. Membrane bending elasticity and its role for shape fluctuations and shape transformations of cells and vesicles. Faraday discussions of the chemical society, 81, 281–290.
  • Safran, S.A., 1999. Curvature elasticity of thin films. Advances in physics, 48 (4), 395–448.
  • Safran, S., Pincus, P., and Andelman, D., 1990. Theory of spontaneous vesicle formation in surfactant mixtures. Science, 248 (4953), 354–356.
  • Safran, S., et al., 1991. Stability and phase behavior of mixed surfactant vesicles. Physical review A, 43 (2), 1071–1078.
  • Sakuragi, M., et al., 2011. Transformation from multilamellar to unilamellar vesicles by addition of a cationic lipid to PEGylated liposomes explored with synchrotron small angle X-ray scattering. Journal of physics: conference series, 272, 012011.
  • Saupe, A., 1977. Textures, deformations, and structural order of liquid crystals. Journal of colloid and interface science, 58 (3), 549–558.
  • Seddon, J.M., 1990. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochimica et biophysica Acta (BBA) – reviews on biomembranes, 1031 (1), 1–69.
  • Šegota, S., and Težak, D., 2006. Spontaneous formation of vesicles. Advances in colloid and interface science, 121 (1–3), 51–75.
  • Seifert, U., and Lipowsky, R., 1995. Morphology of vesicles. In: Handbook of biological physics, vol. 1. Amsterdam: Elsevier Science Amsterdam, 403–464.
  • Sens, P., and Isambert, H., 2002. Undulation instability of lipid membranes under an electric field. Physical review letters, 88 (12), 128102.
  • Servuss, R.M., Harbich, V., and Helfrich, W., 1976. Measurement of the curvature-elastic modulus of egg lecithin bilayers. Biochimica et biophysica Acta (BBA) – biomembranes, 436 (4), 900–903.
  • Sheetz, M.P., and Chan, S.I., 1972. Effect of sonication on the structure of lecithin bilayers. Biochemistry, 11 (24), 4573–4581.
  • Shi, S., Yin, T., and Shen, W., 2019. Multilamellar to unilamellar vesicle transformation in aqueous solutions of a catanionic surface active ionic liquid. Journal of molecular liquids, 290, 111245.
  • Shin, D., Yoshida, S., Morimoto, Y., and Takeuchi, S., 2017. Centrifuge-based membrane emulsification toward high-throughput generation of monodisperse liposomes. In: 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), IEEE, 123–126.
  • Shioi, A., and Hatton, T.A., 2002. Model for formation and growth of vesicles in mixed anionic/cationic (SOS/CTAB) surfactant systems. Langmuir, 18 (20), 7341–7348.
  • Shum, H.C., et al., 2008. Double emulsion templated monodisperse phospholipid vesicles. Langmuir, 24 (15), 7651–7653.
  • Siegel, D.P., 2006. Determining the ratio of the gaussian curvature and bending elastic moduli of phospholipids from qii phase unit cell dimensions. Biophysical journal, 91 (2), 608–618.
  • Siegel, D.P., 2008. The gaussian curvature elastic energy of intermediates in membrane fusion. Biophysical journal, 95 (11), 5200–5215.
  • Siegel, D.P., and Kozlov, M.M., 2004. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophysical journal, 87 (1), 366–374.
  • Sierro, P., and Roux, D., 1997. Structure of a lyotropic lamellar phase under shear. Physical review letters, 78 (8), 1496–1499.
  • Silvander, M., Karlsson, G., and Edwards, K., 1996. Vesicle solubilization by alkyl sulfate surfactants: a Cryo-TEM study of the vesicle to micelle transition. Journal of colloid and interface science, 179 (1), 104–113.
  • Skalko-Basnet, N., Pavelic, Z., and Becirevic-Lacan, M., 2000. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug development and industrial pharmacy, 26 (12), 1279–1284.
  • Small, D.M., Penkett, S.A., and Chapman, D., 1969. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochimica et biophysica acta (BBA) – lipids and lipid metabolism, 176 (1), 178–189.
  • Söderman, O., et al., 1997. Transition from micelles to vesicles in aqueous mixtures of anionic and cationic surfactants. Langmuir, 13 (21), 5531–5538.
  • Somoza, A.M., Marconi, U.M.B., and Tarazona, P., 1996. Growth in systems of vesicles and membranes. Physical review E, 53 (5), 5123–5129.
  • Sterling, I., 1993. Willmore surfaces and computers. In: H. Davis and J. Nitsche, eds. Statistical Thermodynamics and Differential Geometry of Microstructured Materials. Berlin: Springer, 131–136.
  • Storm, G., et al., 1987. Influence of lipid composition on the antitumor activity exerted by doxorubicin-containing liposomes in a rat solid tumor model. Cancer research, 47 (13), 3366–3372.
  • Sundar, S.K., and Tirumkudulu, M.S., 2013. Synthesis of sub-100-nm liposomes via hydration in a packed bed of colloidal particles. Industrial and engineering chemistry research, 53 (1), 198–205.
  • Szoka, F., and Papahadjopoulos, D., 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the national academy of sciences, 75 (9), 4194–4198.
  • Szoka, F., and Papahadjopoulos, D., 1980. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annual review of biophysics and bioengineering, 9 (1), 467–508.
  • Tanford, C., 1972. Micelle shape and size. The journal of physical chemistry, 76 (21), 3020–3024.
  • Tanford, C., 1980. The hydrophobic effect: formation of micelles and biological membranes, 2nd ed. New York: John Wiley.
  • Tartar, H.V., and Lelong, A.L.M., 1955. Micellar molecular weights of some paraffin chain salts by light scattering. The journal of physical chemistry, 59 (12), 1185–1190.
  • Teh, S.Y., et al., 2011. Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics, 5 (4), 044113.
  • Templer, R.H., Khoo, B.J., and Seddon, J.M., 1998. Gaussian curvature modulus of an amphiphilic monolayer. Langmuir, 14 (26), 7427–7434.
  • Toledo, M.A.S., et al., 2012. Development of a recombinant fusion protein based on the dynein light chain lc8 for non-viral gene delivery. Journal of controlled release, 159 (2), 222–231.
  • Tristram-Nagle, S., and Nagle, J.F., 2007. HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophysical journal, 93 (6), 2048–2055.
  • van Dam, L., Karlsson, G., and Edwards, K., 2004. Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. Biochimica et biophysica acta (BBA) – biomembranes, 1664 (2), 241–256.
  • Vanderlinde, J., 2006. Classical electromagnetic theory, vol. 145, Netherlands: Springer.
  • Vitkova, V., et al., 2018. Sucrose solutions alter the electric capacitance and dielectric permittivity of lipid bilayers. Colloids and surfaces A: physicochemical and engineering aspects, 557, 51–57.
  • Vladisavljević, G.T., et al., 2014. Production of liposomes using microengineered membrane and co-flow microfluidic device. Colloids and surfaces A: physicochemical and engineering aspects, 458, 168–177.
  • Vlahovska, P.M., et al., 2009. Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophysical journal, 96 (12), 4789–4803.
  • Walter, A., et al., 1991. Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition. Biophysical journal, 60 (6), 1315–1325.
  • Wang, T., et al., 2006. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochimica et biophysica acta (BBA) – biomembranes, 1758 (2), 222–231.
  • Weaver, J.C., and Chizmadzhev, Y.A., 1996. Theory of electroporation: a review. Bioelectrochemistry and bioenergetics, 41 (2), 135–160.
  • Weinberger, A., et al., 2013. Gel-assisted formation of giant unilamellar vesicles. Biophysical journal, 105 (1), 154–164.
  • Weiss, T.M., Narayanan, T., and Gradzielski, M., 2008. Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir, 24 (8), 3759–3766.
  • Winterhalter, M., and Helfrich, W., 1992. Bending elasticity of electrically charged bilayers: coupled monolayers, neutral surfaces, and balancing stresses. The journal of physical chemistry, 96 (1), 327–330.
  • Winterhalter, M., and Lasic, D.D., 1993. Liposome stability and formation: experimental parameters and theories on the size distribution. Chemistry and physics of lipids, 64 (1–3), 35–43.
  • Zana, R., 2005. Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic phases. Boca Raton: CRC press.
  • Zhdanov, V.P., and Kasemo, B., 2000. Lipid-diffusion-limited kinetics of vesicle growth. Langmuir, 16 (19), 7352–7354.
  • Zhigaltsev, I.V., et al., 2012. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir, 28 (7), 3633–3640.
  • Zook, J.M., and Vreeland, W.N., 2010. Effects of temperature, acyl chain length, and flow-rate ratio on liposome formation and size in a microfluidic hydrodynamic focusing device. Soft matter, 6 (6), 1352–1360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.