158
Views
1
CrossRef citations to date
0
Altmetric
Articles

A novel osmoprotective liposomal formulation from synthetic phospholipids to reduce in vitro hyperosmolar stress in dry eye treatments

, , , , &
Pages 117-128 | Received 25 Apr 2022, Accepted 02 Jun 2022, Published online: 15 Jun 2022

References

  • Abal, P.P., 2016. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug delivery and translational research, 6 (6), 686-707.
  • Acar, D., et al., 2018. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Contact lens & anterior eye, 41 (1), 93–96.
  • Afri, M., et al., 2004. Active oxygen chemistry within the liposomal bilayer. Part III: locating vitamin E, ubiquinol and ubiquinone and their derivatives in the lipid bilayer. Chemistry and physics of lipids, 131 (1), 107–121.
  • Anderson, M. and Omri, A., 2004. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug delivery, 11 (1), 33–39.
  • Attwood, S.J., Choi, Y., and Leonenko, Z., 2013. Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy. International journal of molecular sciences, 14 (2), 3514–3539.
  • Blalock, T.D., et al., 2008. Release of membrane-associated mucins from ocular surface epithelia. Investigative ophthalmology & visual science, 49 (5), 1864–1871.
  • Bron, A.J., et al., 2017. TFOS DEWS II pathophysiology report. The ocular surface, 15 (3), 438–510.
  • Bron, A.J., et al., 2009. Predicted phenotypes of dry eye: proposed consequences of its natural history. The ocular surface, 7 (2), 78–92.
  • Bucolo, C., et al., 2018. Antioxidant and osmoprotecting activity of taurine in dry eye models. Journal of ocular pharmacology and therapeutics, 34 (1–2), 188–194.
  • Butovich, I.A., Millar, T.J., and Ham, B.M., 2008. Understanding and analyzing meibomian lipids—a review. Current eye research, 33 (5–6), 405–420.
  • Chandrinos, A. and Tzamouranis, D.-D., 2020. Dry eye, contact lenses and preservatives in glaucoma medication. The clinical ophthalmologist journal, 1 (1), 1003.
  • Chávez-Hurtado, P., et al., 2022. Physicochemical characterization of a DMPC-based nanoemulsion for dry eye and compatibility test with soft contact lenses in vitro. Contact lens and anterior eye, 45 (2), 101428.
  • Chen, W., et al., 2018. Determination of the main phase transition temperature of phospholipids by nanoplasmonic sensing. Scientific reports, 8 (1), 1–11.
  • Cher, I., 2014. Ocular surface concepts: development and citation. The ocular surface, 12 (1), 10–13.
  • Contreras-Ruiz, L., et al., 2010. Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea, 29 (5), 550–558.
  • Corrales, R.M., et al., 2008. Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells. Cornea, 27 (5), 574–579.
  • Davidson, H.J. and Kuonen, V.J., 2004. The tear film and ocular mucins. Veterinary ophthalmology, 7 (2), 71–77.
  • Davies, N.M., 2000. Biopharmaceutical considerations in topical ocular drug delivery. Clinical and experimental pharmacology & physiology, 27 (7), 558–562.
  • Deng, R., et al., 2014. Osmoprotectants suppress the production and activity of matrix metalloproteinases induced by hyperosmolarity in primary human corneal epithelial cells. Molecular vision, 20, 1243–1252.
  • Dilly, P. N. (1994). Structure and function of the tear film. In D. A. Sullivan (Ed.), Lacrimal gland, tear film, and dry eye syndromes (pp. 239–247). Springer.
  • Eibl, H., and Kaufmann-Kolle, P., 1995. Medical application of synthetic phospholipids as liposomes and drugs. Journal of liposome research, 5 (1), 131–148.
  • Enrı, A., et al., 2006. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Investigative ophthalmology & visual science, 47 (4), 1416–1425.
  • Epstein, S.P., Chen, D., and Asbell, P.A., 2009. Evaluation of biomarkers of inflammation in response to benzalkonium chloride on corneal and conjunctival epithelial cells. Journal of ocular pharmacology and therapeutics, 25 (5), 415–424.
  • Essmer, E.L.M.M., et al., 2013. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. The ocular surface, 11 (4), 246–258.
  • Freeberg, F.E., et al., 1986. Human and rabbit eye responses to chemical insult. Toxicological sciences, 7 (4), 626–634.
  • Fresta, M., et al., 1999. Characterization and in-vivo ocular absorption of liposome-encapsulated acyclovir. The journal of pharmacy and pharmacology, 51 (5), 565–576.
  • Garrigue, J.S., et al., 2017. Relevance of lipid-based products in the management of dry eye disease. Journal of ocular pharmacology and therapeutics, 33 (9), 647–661.
  • Gómez-Ballesteros, M., et al., 2019. Osmoprotectants in hybrid liposome/HPMC systems as potential glaucoma treatment. Polymers, 11 (6), 929.
  • González, M.Á.C., 2020. Estudio de formulaciones liposomales oftálmicas. Aplicación en la enfermedad de ojo seco.
  • Gonzalez Gomez, A., et al., 2019. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega, 4 (6), 10866–10876.
  • Grassiri, B., Zambito, Y., and Bernkop-Schnürch, A., 2021. Strategies to prolong the residence time of drug delivery systems on ocular surface. Advances in colloid and interface science, 288, 102342.
  • Gulsen, D., Li, C.C., and Chauhan, A., 2005. Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Current eye research, 30 (12), 1071–1080.
  • Hájek, J., et al., 2009. Cryoproective role of ribitol in Xanthoparmelia somloensis. Biologia plantarum, 53 (4), 677–684.
  • Herrero-Vanrell, R., et al., 2013. Nano and microtechnologies for ophthalmic administration, an overview. Journal of drug delivery science and technology, 23 (2), 75–102.
  • Houlsby, R.D., Ghajar, M., and Chavez, G., 1986. Antimicrobial activity of borate-buffered solutions. Antimicrobial agents and chemotherapy, 89 (5), 803–806.
  • Hubrecht, R.C. and Carter, E., 2019. The 3Rs and humane experimental technique: implementing change. Animals, 9 (10), 754.
  • Jones, L., et al., 2017. TFOS DEWS II management and therapy report. The ocular surface, 15 (3), 575–628.
  • José, A., et al., 2018. Combination of hyaluronic acid, carmellose, and osmoprotectants for the treatment of dry eye disease. Clinical ophthalmology, 12, 453–461.
  • Li, D., et al., 2006. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Experimental eye research, 82 (4), 588–596.
  • Links, D.A., 2012. The impact of lipid composition on the stability of the tear fluid lipid layer. Soft matter, 8 (21), 5826–5834.
  • Liu, H., et al., 2009. A link between tear instability and hyperosmolarity in dry eye. Investigative ophthalmology & visual science, 50 (8), 3671–3679.
  • López-Cano, J.J., et al., 2021a. Combined hyperosmolarity and inflammatory conditions in stressed human corneal epithelial cells and macrophages to evaluate osmoprotective agents as potential DED treatments. Experimental eye research, 211, 108723.
  • López-Cano, J.J., et al., 2021b. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert opinion on drug delivery, 18 (7), 819–848.
  • Loss, E., 2009. Inputs and outputs of the lacrimal system: review of production and evaporative loss. The ocular surface, 7 (4), 186–198.
  • Luo, L., Li, D.Q., and Pflugfelder, S.C., 2007. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea, 26 (4), 452–460.
  • Luo, L., et al., 2004. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Investigative ophthalmology & visual science, 45 (12), 4293–4301.
  • Meng, T., et al., 2019. Therapeutic implications of nanomedicine for ocular drug delivery. Drug discovery today, 24 (8), 1524–1538.
  • Naguib, Y.W., et al., 2021. Biomaterials solubilized ubiquinol for preserving corneal function. Biomaterials, 275, 120842.
  • OECD Guidelines for the Testing of Chemicals, n.d.
  • Partenhauser, A. and Bernkop-schnu, A., 2016. Mucoadhesive polymers in the treatment of dry X syndrome. Drug discovery today, 21 (7), 1051–1062.
  • Refai, H., et al., 2017. Development and characterization of polymer- coated liposomes for vaginal delivery of sildenafil citrate. Drug delivery, 24 (1), 278–288.
  • Schniertshauer, D., et al., 2020. The activity of the DNA repair enzyme hOGG1 can be directly modulated by ubiquinol. DNA repair, 87, 102784.
  • Schuett, B.S. and Millar, T.J., 2012. Lipid component contributions to the surface activity of meibomian lipids. Investigative ophthalmology & visual science, 53 (11), 7208–7219.
  • Shahraki, K., et al., 2016. Effects of topical 1% sodium hyaluronate and hydroxypropyl methylcellulose in treatment of corneal epithelial defects. Medical hypothesis, discovery & innovation ophthalmology journal, 5 (4), 136–144. http://www.ncbi.nlm.nih.gov/pubmed/28293662%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5346304
  • Singh, M., et al., 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in environmental science and bio/technology, 14 (3), 407–426.
  • Stapleton, F., et al., 2017. TFOS DEWS II epidemiology report. The ocular surface, 15 (3), 334–365.
  • Stoll, C., et al., 2012. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Biotechnology progress, 28 (2), 364–371.
  • Taha, E.I., et al., 2014. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi pharmaceutical journal, 22 (3), 231–239.
  • OECD, 2021. Test No. 405: acute eye irritation/corrosion. OECD.
  • The Association for Research in Vision and Ophthalmology, n.d. Statement for the use of animals in ophthalmic and vision research. Available from: https://www.arvo.org/About/policies/statement-for-the-use-of-animals-in-ophthalmic-and-vision-research/ [Accessed 23 June 2021].
  • Tiffany, J.M., 2008. The normal tear film. Surgery for the dry eye, 41, 1–20.
  • Tirpack, A.R., et al., 2019. Dry eye symptoms and ocular pain in veterans with glaucoma. Journal of clinical medicine, 8 (7), 1076.
  • Tomlinson, A., et al., 2006. Tear film osmolarity: Determination of a referent for dry eye diagnosis. Investigative ophthalmology & visual science, 47 (10), 1–7.
  • Tran, K.N., et al., 2020. Purification and characterization of a novel medium-chain ribitol dehydrogenase from a lichen-associated bacterium Sphingomonas sp. PLOS one, 15 (7), e0235718.
  • Vicario-de-la-Torre, M., et al., 2014. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Investigative ophthalmology & visual science, 55 (12), 7839–7847.
  • Vicario-de-la-Torre, M., et al., 2018. Novel nano-liposome formulation for dry eyes with components similar to the preocular tear film. Polymers, 10 (4), 425–413.
  • Bollag, W.B., et al., 2020. Dioleoylphosphatidylglycerol accelerates corneal epithelial wound healing. Investigative ophthalmology & visual science, 3 (29), 1–4.
  • Willcox, M.D.P., et al., 2017. TFOS DEWS II tear film report. The ocular surface, 15 (3), 366–403.
  • Wong, A.B.C., et al., 2018. Exploring topical anti-glaucoma medication effects on the ocular surface in the context of the current understanding of dry eye. The ocular surface, 16 (3), 289–293.
  • Yamauchi, M., et al., 2007. Release of drugs from liposomes varies with particle size. Biological & pharmaceutical bulletin, 30 (5), 963–966.
  • Ye, J., et al., 2012. Cytoprotective effect of hyaluronic acid and hydroxypropyl methylcellulose against DNA damage induced by thimerosal in Chang conjunctival cells. Graefe's archive for clinical and experimental ophthalmology, 250 (10), 1459–1466.
  • Zhan, C., et al., 2018. Long-acting liposomal corneal anesthetics. Biomaterials, 181, 372–377.
  • Zhang, F., et al., 2021. Preparation and in vitro/in vivo evaluations of novel ocular micelle formulations of hesperetin with glycyrrhizin as a nanocarrier. Experimental eye research, 202, 108313.
  • Zhang, R., et al., 2019. Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocular Surface, 18 (1), 158-169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.