358
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in liposome-based targeted cancer therapy

, , &
Pages 316-334 | Received 13 May 2023, Accepted 29 Sep 2023, Published online: 17 Oct 2023

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer Statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi: 10.3322/caac.21763.
  • Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. Artif Cells Nanomed Biotechnol. 2017;45(8):1478–1489. doi: 10.1080/21691401.2017.1290647.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. doi: 10.3390/pharmaceutics9020012.
  • Charmsaz S, Prencipe M, Kiely M, et al. Innovative technologies changing cancer treatment. Cancers. 2018;10(6):208. doi: 10.3390/cancers10060208.
  • Morales-Cruz M, Delgado Y, Castillo B, et al. Smart targeting to improve cancer therapeutics. Drug Des Devel Ther. 2019;13:3753–3772. doi: 10.2147/DDDT.S219489.
  • Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 2019;13:961. doi: 10.3332/ecancer.2019.961.
  • Crommelin DJ, Storm G. Liposomes: from the bench to the bed. J Liposome Res. 2003;13(1):33–36. doi: 10.1081/lpr-120017488.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–160. doi: 10.1038/nrd1632.
  • Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3–9. doi: 10.15171/apb.2017.002.
  • Alsawaftah N, Pitt WG, Husseini GA. Dual-targeting and stimuli-triggered liposomal drug delivery in cancer treatment. ACS Pharmacol Transl Sci. 2021;4(3):1028–1049. doi: 10.1021/acsptsci.1c00066.
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–252. doi: 10.1016/s0022-2836(65)80093-6.
  • Deamer DW. From "banghasomes" to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J. 2010;24(5):1308–1310. doi: 10.1096/fj.10-0503.
  • Laverman P, Boerman OC, Oyen WJ, et al. Liposomes for scintigraphic detection of infection and inflammation. Adv Drug Deliv Rev. 1999;37(1-3):225–235. 10.1016/s0169-409x(98)00095-710837737
  • Jain A, Kumari R, Tiwari A, et al. Nanocarrier based advances in drug delivery to tumor: An overview. Curr Drug Targets. 2018;19(13):1498–1518. 10.2174/138945011966618013110582229384060
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi: 10.1186/1556-276X-8-102.
  • Talegaonkar S, Mishra P, Khar R, et al. Vesicular systems: an overview. Indian J Pharm Sci. 2006;68(2):141. doi: 10.4103/0250-474X.25707.
  • O'Brien ME, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–449. doi: 10.1093/annonc/mdh097.
  • Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A. 1988;85(18):6949–6953. doi: 10.1073/pnas.85.18.6949.
  • Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84. doi: 10.1016/j.ces.2014.08.046.
  • Huwyler J, Drewe J, Krahenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine. 2008;3(1):21–29.
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284. doi: 10.1016/s0168-3659(99)00248-5.
  • Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–169. doi: 10.1016/j.addr.2010.09.003.
  • Yuan DF, Zong TL, Gao HL, et al. Cell penetrating peptide TAT and brain tumor targeting peptide T7 dual modified liposome preparation and in vitro targeting evaluation. Yao Xue Xue Bao. 2015;50(1):104–110.
  • Zhang Y, Zhai M, Chen Z, et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv. 2017;24(1):1045–1055. doi: 10.1080/10717544.2017.1344334.
  • Al-Jamal WT, Al-Jamal KT, Bomans PH, et al. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small. 2008;4(9):1406–1415. doi: 10.1002/smll.200701043.
  • Erdogan S, Torchilin VP. Gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes. Methods Mol Biol. 2017;1522:179–192. doi: 10.1007/978-1-4939-6591-5_14.
  • Portnoy E, Lecht S, Lazarovici P, et al. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine. 2011;7(4):480–488. doi: 10.1016/j.nano.2011.01.001.
  • Fonslow BR, Stein BD, Webb KJ, et al. Digestion and depletion of abundant proteins improves proteomic coverage. Nat Methods. 2013;10(1):54–56. doi: 10.1038/nmeth.2250.
  • Li S, Goins B, Zhang L, et al. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem. 2012;23(6):1322–1332. doi: 10.1021/bc300175d.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286.
  • Cho H, Stuart JM, Magid R, et al. Theranostic immunoliposomes for osteoarthritis. Nanomedicine. 2014;10(3):619–627. doi: 10.1016/j.nano.2013.09.004.
  • Accardo A, Morelli G. Review peptide-targeted liposomes for selective drug delivery: advantages and problematic issues. Biopolymers. 2015;104(5):462–479. doi: 10.1002/bip.22678.
  • Bazak R, Houri M, Achy SE, et al. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol. 2014;2(6):904–908. doi: 10.3892/mco.2014.356.
  • Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000;11(8):1029–1033. doi: 10.1023/a:1008365716693.
  • Greish K. Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: are we there yet? Drug Discov Today Technol. 2012;9:e71–e174.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–427. doi: 10.1016/j.ejps.2012.12.006.
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008;26(1):57–64. doi: 10.1016/j.urolonc.2007.03.015.
  • Kim SK, Huang L. Nanoparticle delivery of a peptide targeting EGFR signaling. J Control Release. 2012;157(2):279–286. doi: 10.1016/j.jconrel.2011.08.014.
  • Lehtinen J, Raki M, Bergstrom KA, et al. Pre-targeting and direct immunotargeting of liposomal drug carriers to ovarian carcinoma. PLOS One. 2012;7(7):e41410. doi: 10.1371/journal.pone.0041410.
  • Rofstad EK, Galappathi K, Mathiesen BS. Tumor interstitial fluid pressure—a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia. 2014;16(7):586–594. doi: 10.1016/j.neo.2014.07.003.
  • Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer. 2008;99(3):392–397. doi: 10.1038/sj.bjc.6604483.
  • Heldin CH, Rubin K, Pietras K, et al. High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–813. doi: 10.1038/nrc1456.
  • Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134. doi: 10.1016/j.jconrel.2012.03.020.
  • Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19:195.
  • Belfiore L, Saunders DN, Ranson M, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J Control Release. 2018;277:1–13. doi: 10.1016/j.jconrel.2018.02.040.
  • Nguyen TX, Huang L, Gauthier M, et al. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine. 2016;11(9):1169–1185. doi: 10.2217/nnm.16.9.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68(3):701–787. doi: 10.1124/pr.115.012070.
  • Egusquiaguirre SP, Igartua M, Hernandez RM, et al. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol. 2012;14(2):83–93. doi: 10.1007/s12094-012-0766-6.
  • Fay F, Scott CJ. Antibody-targeted nanoparticles for cancer therapy. Immunotherapy. 2011;3(3):381–394. doi: 10.2217/imt.11.5.
  • Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci. 2017;8(1):63–77. doi: 10.1039/c6sc02403c.
  • Rigon RB, Oyafuso MH, Fujimura AT, et al. Nanotechnology-based drug delivery systems for melanoma antitumoral therapy: a review. Biomed Res Int. 2015;2015:841817–841822. doi: 10.1155/2015/841817.
  • Spicer CD, Jumeaux C, Gupta B, et al. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev. 2018;47(10):3574–3620. doi: 10.1039/c7cs00877e.
  • Saraf S, Jain A, Tiwari A, et al. Advances in liposomal drug delivery to cancer: an overview. J Drug Delivery Sci Technol. 2020;56:101549. doi: 10.1016/j.jddst.2020.101549.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760. doi: 10.1038/nnano.2007.387.
  • Shi JJ, Xiao ZY, Kamaly N, et al. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44(10):1123–1134. doi: 10.1021/ar200054n.
  • Jeong Y, Xie Y, Xiao G, et al. Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer. PLoS Med. 2010;7(12):e1000378. doi: 10.1371/journal.pmed.1000378.
  • Holbeck S, Chang J, Best AM, et al. Expression profiling of nuclear receptors in the NCI60 cancer cell panel reveals receptor–drug and receptor–gene interactions. Mol Endocrinol. 2010;24(6):1287–1296. doi: 10.1210/me.2010-0040.
  • Qin Y, Chen H, Yuan W, et al. Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int J Pharm. 2011;419(1–2):85–95. doi: 10.1016/j.ijpharm.2011.07.021.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009.
  • Duncan R, Vicent MJ, Greco F, et al. Polymer–drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr Relat Cancer. 2005;12(Suppl. 1):S189–S199. doi: 10.1677/erc.1.01045.
  • Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14(3):203–219. doi: 10.1038/nrd4519.
  • Florence AT. "Targeting" nanoparticles: the constraints of physical laws and physical barriers. J Control Release. 2012;164(2):115–124. doi: 10.1016/j.jconrel.2012.03.022.
  • Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008;26(10):552–558. doi: 10.1016/j.tibtech.2008.06.007.
  • Slingerland M, Guchelaar HJ, Rosing H, et al. Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther. 2013;35(12):1946–1954. doi: 10.1016/j.clinthera.2013.10.009.
  • Awada A, Bondarenko IN, Bonneterre J, et al. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol. 2014;25(4):824–831. doi: 10.1093/annonc/mdu025.
  • Krauze MT, Noble CO, Kawaguchi T, et al. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (doxil) in rodent intracranial brain tumor xenografts. Neuro Oncol. 2007;9(4):393–403. doi: 10.1215/15228517-2007-019.
  • Semple SC, Leone R, Wang J, et al. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci. 2005;94(5):1024–1038. doi: 10.1002/jps.20332.
  • Mahalingam D, Nemunaitis JJ, Malik L, et al. Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;74(6):1241–1250. doi: 10.1007/s00280-014-2602-x.
  • Tardi P, Choice E, Masin D, et al. Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res. 2000;60(13):3389–3393.
  • Yang SH, Lin CC, Lin ZZ, et al. A phase I and pharmacokinetic study of liposomal vinorelbine in patients with advanced solid tumor. Invest New Drugs. 2012;30(1):282–289. doi: 10.1007/s10637-010-9522-3.
  • Leung AK, Tam YY, Cullis PR. Lipid nanoparticles for short interfering RNA delivery. Adv Genet. 2014;88:71–110. doi: 10.1016/B978-0-12-800148-6.00004-3.
  • Harrington KJ, Lewanski CR, Northcote AD, et al. Phase I–II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol. 2001;12(4):493–496. doi: 10.1023/a:1011199028318.
  • Rosenthal DI, Yom SS, Liu L, et al. A phase I study of SPI-077 (stealth liposomal cisplatin) concurrent with radiation therapy for locally advanced head and neck cancer. Invest New Drugs. 2002;20(3):343–349. doi: 10.1023/a:1016201732368.
  • Dragovich T, Mendelson D, Kurtin S, et al. A phase 2 trial of the liposomal DACH platinum l-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol. 2006;58(6):759–764. doi: 10.1007/s00280-006-0235-4.
  • Batist G, Gelmon KA, Chi KN, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res. 2009;15(2):692–700. doi: 10.1158/1078-0432.CCR-08-0515.
  • Gamucci T, Paridaens R, Heinrich B, et al. Activity and toxicity of GI147211 in breast, colorectal and non-small-cell lung cancer patients: an EORTC-ECSG phase II clinical study. Ann Oncol. 2000;11(7):793–797. doi: 10.1023/a:1008373031714.
  • Seiden MV, Muggia F, Astrow A, et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol. 2004;93(1):229–232. doi: 10.1016/j.ygyno.2003.12.037.
  • Cortes JE, Goldberg SL, Feldman EJ, et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer. 2015;121(2):234–242. doi: 10.1002/cncr.28974.
  • Boulikas T. Clinical overview on lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs. 2009;18(8):1197–1218. doi: 10.1517/13543780903114168.
  • Stathopoulos GP, Antoniou D, Dimitroulis J, et al. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol. 2010;21(11):2227–2232. doi: 10.1093/annonc/mdq234.
  • Kang MH, Wang J, Makena MR, et al. Activity of MM-398, nanoliposomal irinotecan (nal-IRI), in Ewing’s family tumor xenografts is associated with high exposure of tumor to drug and high SLFN11 expression. Clin Cancer Res. 2015;21(5):1139–1150. doi: 10.1158/1078-0432.CCR-14-1882.
  • Yarmolenko PS, Zhao Y, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia. 2010;26(5):485–498. doi: 10.3109/02656731003789284.
  • Hamaguchi T, Matsumura Y, Nakanishi Y, et al. Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Sci. 2004;95(7):608–613. doi: 10.1111/j.1349-7006.2004.tb02495.x.
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–782. doi: 10.1038/nrd2614.
  • Goodall S, Jones ML, Mahler S. Monoclonal antibody-targeted polymeric nanoparticles for cancer therapy-future prospects. J Chem Technol Biotechnol. 2015;90(7):1169–1176. doi: 10.1002/jctb.4555.
  • Miller K, Cortes J, Hurvitz SA, et al. HERMIONE: a randomized phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naive, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer. 2016;16(1):352. doi: 10.1186/s12885-016-2385-z.
  • van der Meel R, Vehmeijer LJ, Kok RJ, et al. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev. 2013;65(10):1284–1298. doi: 10.1016/j.addr.2013.08.012.
  • Birngruber T, Raml R, Gladdines W, et al. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx®/Doxil®—a cerebral open flow microperfusion pilot study. J Pharm Sci. 2014;103(7):1945–1948. doi: 10.1002/jps.23994.
  • Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin–PEG-liposome. Int J Pharm. 2008;346(1–2):143–150. doi: 10.1016/j.ijpharm.2007.06.010.
  • Laginha KM, Verwoert S, Charrois GJ, et al. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res. 2005;11(19 Pt 1):6944–6949. doi: 10.1158/1078-0432.CCR-05-0343.
  • Wang RH, Cao HM, Tian ZJ, et al. Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol Rep. 2015;33(2):783–791. doi: 10.3892/or.2014.3644.
  • Doolittle E, Peiris PM, Doron G, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis. ACS Nano. 2015;9(8):8012–8021. doi: 10.1021/acsnano.5b01552.
  • Zhang Q, Lu L, Zhang L, et al. Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. Sci Rep. 2016;6(1):19800. doi: 10.1038/srep19800.
  • Qin L, Wang CZ, Fan HJ, et al. A dual-targeting liposome conjugated with transferrin and arginine–glycine–aspartic acid peptide for glioma-targeting therapy. Oncol Lett. 2014;8(5):2000–2006. doi: 10.3892/ol.2014.2449.
  • Kiaie SH, Mojarad-Jabali S, Khaleseh F, et al. Axial pharmaceutical properties of liposome in cancer therapy: recent advances and perspectives. Int J Pharm. 2020;581:119269. doi: 10.1016/j.ijpharm.2020.119269.
  • Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3(1):18496. doi: 10.3402/nano.v3i0.18496.
  • Fernandez M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9(4):790–810. doi: 10.1039/c7sc04004k.
  • Zhu X, Kong Y, Liu Q, et al. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm Pharmacol Ther. 2019;55:50–61. doi: 10.1016/j.pupt.2019.02.001.
  • Nguyen VD, Min HK, Kim CS, et al. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B Biointerfaces. 2019;173:539–548. doi: 10.1016/j.colsurfb.2018.10.013.
  • Silva JD, Fernandes RS, Oda CMR, et al. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed Pharmacother. 2019;118:109323. doi: 10.1016/j.biopha.2019.109323.
  • Nunes SS, Miranda SEM, Silva JD, et al. pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. Biomed Pharmacother. 2021;144:112317. doi: 10.1016/j.biopha.2021.112317.
  • Onodera R, Morioka S, Unida S, et al. Design and evaluation of folate-modified liposomes for pulmonary administration in lung cancer therapy. Eur J Pharm Sci. 2022;168:106081. doi: 10.1016/j.ejps.2021.106081.
  • Jain A, Jain SK. Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev Ind Pharm. 2016;42(1):136–149. doi: 10.3109/03639045.2015.1036066.
  • Necela BM, Crozier JA, Andorfer CA, et al. Folate receptor-α (FOLR1) expression and function in triple negative tumors. PLOS One. 2015;10(3):e0122209. doi: 10.1371/journal.pone.0122209.
  • Wang L, Evans JC, Ahmed L, et al. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer. Sci Rep. 2023;13(1):3226. doi: 10.1038/s41598-023-28424-3.
  • Daniels TR, Delgado T, Rodriguez JA, et al. The transferrin receptor. Part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol. 2006;121(2):144–158. doi: 10.1016/j.clim.2006.06.010.
  • Lopalco A, Cutrignelli A, Denora N, et al. Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood–brain barrier. Nanomaterials. 2018;8(3):178. doi: 10.3390/nano8030178.
  • Daniels TR, Bernabeu E, Rodriguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820(3):291–317. doi: 10.1016/j.bbagen.2011.07.016.
  • Sakpakdeejaroen I, Somani S, Laskar P, et al. Transferrin-bearing liposomes entrapping plumbagin for targeted cancer therapy. J Interdiscip Nanomed. 2019;4(2):54–71. doi: 10.1002/jin2.56.
  • Alsawaftah NM, Awad NS, Paul V, et al. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci Rep. 2021;11(1):11589. doi: 10.1038/s41598-021-90349-6.
  • Nandi U, Onyesom I, Douroumis D. Transferrin conjugated stealth liposomes for sirolimus active targeting in breast cancer. J Drug Delivery Sci Technol. 2021;66:102900. doi: 10.1016/j.jddst.2021.102900.
  • Fernandes MA, Eloy JO, Luiz MT, et al. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf A Physicochem Eng Asp. 2021;611:125806.
  • Jhaveri A, Deshpande P, Pattni B, et al. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89–101. doi: 10.1016/j.jconrel.2018.03.006.
  • Song X-L, Liu S, Jiang Y, et al. Targeting vincristine plus tetrandrine liposomes modified with DSPE-PEG2000-transferrin in treatment of brain glioma. Eur J Pharm Sci. 2017;96:129–140. doi: 10.1016/j.ejps.2016.09.024.
  • Heydari M, Gholoobi A, Ranjbar G, et al. Aptamers as potential recognition elements for detection of vitamins and minerals: a systematic and critical review. Crit Rev Clin Lab Sci. 2020;57(2):126–144. doi: 10.1080/10408363.2019.1678566.
  • Xu L, He XY, Liu BY, et al. Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids Surf B Biointerfaces. 2018;171:24–30. doi: 10.1016/j.colsurfb.2018.07.008.
  • Yu S, Bi XJ, Yang L, et al. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J Biomed Nanotechnol. 2019;15(6):1135–1148. doi: 10.1166/jbn.2019.2751.
  • Cadinoiu AN, Rata DM, Atanase LI, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polymers. 2019;11(9):1515. doi: 10.3390/polym11091515.
  • Li X, Wu XH, Yang HY, et al. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother. 2019;117:109072. doi: 10.1016/j.biopha.2019.109072.
  • Park H-B, You J-E, Kim P-H, et al. Functionalizing liposomes with dual aptamers for targeting of breast cancer cells and cancer stem cells. Biomed Sci Lett. 2021;27(1):1–11. doi: 10.15616/BSL.2021.27.1.1.
  • Wu HC, Chang DK. Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy. J Oncol. 2010;2010:723798. doi: 10.1155/2010/723798.
  • Zafar S, Beg S, Panda SK, et al. Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol. 2021;69:249–267. doi: 10.1016/j.semcancer.2019.08.023.
  • Zhao N, Qin Y, Liu H, et al. Tumor-targeting peptides: ligands for molecular imaging and therapy. Anticancer Agents Med Chem. 2018;18(1):74–86. doi: 10.2174/1871520617666170419143459.
  • Zhang L, Shan X, Meng X, et al. The first integrins beta3-mediated cellular and nuclear targeting therapeutics for prostate cancer. Biomaterials. 2019;223:119471. doi: 10.1016/j.biomaterials.2019.119471.
  • Tang Z, Feng W, Yang Y, et al. Gemcitabine-loaded RGD modified liposome for ovarian cancer: preparation, characterization and pharmacodynamic studies. Drug Des Devel Ther. 2019;13:3281–3290. doi: 10.2147/DDDT.S211168.
  • D'Avanzo N, Torrieri G, Figueiredo P, et al. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm. 2021;597:120346. doi: 10.1016/j.ijpharm.2021.120346.
  • Yan Z, Wang F, Wen Z, et al. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release. 2012;157(1):118–125. doi: 10.1016/j.jconrel.2011.07.034.
  • Guan J, Guo H, Tang T, et al. iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv Funct Mater. 2021;31:2100478.
  • Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 2000;355(9205):735–740. doi: 10.1016/s0140-6736(00)01034-5.
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921–3935. doi: 10.2147/IJN.S165210.
  • Gabbia D, Canato E, Carraro V, et al. Novel super stealth immunoliposomes for cancer targeted delivery of doxorubicin: an innovative strategy to reduce liver toxicity. Dig Liver Dis. 2019;51:e21. doi: 10.1016/j.dld.2018.11.073.
  • Lukyanov AN, Elbayoumi TA, Chakilam AR, et al. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release. 2004;100(1):135–144. doi: 10.1016/j.jconrel.2004.08.007.
  • Khayrani AC, Mahmud H, Oo AKK, et al. Targeting ovarian cancer cells overexpressing CD44 with immunoliposomes encapsulating glycosylated paclitaxel. Int J Mol Sci. 2019;20(5):1042. doi: 10.3390/ijms20051042.
  • Jain S, Deore SV, Ghadi R, et al. Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy. Mater Sci Eng C Mater Biol Appl. 2021;121:111832.
  • Narayanaswamy R, Torchilin VP. Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified immunoliposomes for cancer therapy. Pharm Res. 2021;38(3):429–450. doi: 10.1007/s11095-021-02986-1.
  • Paliwal SR, Paliwal R, Agrawal GP, et al. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res. 2016;26(4):276–287. doi: 10.3109/08982104.2015.1117489.
  • Cosco D, Tsapis N, Nascimento TL, et al. Polysaccharide-coated liposomes by post-insertion of a hyaluronan–lipid conjugate. Colloids Surf B Biointerfaces. 2017;158:119–126. doi: 10.1016/j.colsurfb.2017.06.029.
  • Xu Y, Yao Y, Wang L, et al. Hyaluronic acid coated liposomes co-delivery of natural cyclic peptide RA-XII and mitochondrial targeted photosensitizer for highly selective precise combined treatment of colon cancer. Int J Nanomedicine. 2021;16:4929–4942. doi: 10.2147/IJN.S311577.
  • Gomes IP, Malachias A, Maia ALC, et al. Thermosensitive liposomes containing cisplatin functionalized by hyaluronic acid: preparation and physicochemical characterization. J Nanopart Res. 2022;24(2):30. doi: 10.1007/s11051-021-05352-9.
  • Belfiore L. Development of ligand-directed drug-loaded liposomes to target heterogeneous tumour cell populations in metastatic breast cancer [Doctor thesis]. University of Wollongong; 2019.
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297–305. doi: 10.2174/156720107782151269.
  • Sapra P, Allen TM. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin Cancer Res. 2004;10(7):2530–2537. doi: 10.1158/1078-0432.ccr-03-0376.
  • Lale SV, Aswathy RG, Aravind A, et al. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules. 2014;15(5):1737–1752. doi: 10.1021/bm5001263.
  • Zhang B, Zhang YY, Yu DM. Lung cancer gene therapy: transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery. Oncol Rep. 2017;37(2):937–944. doi: 10.3892/or.2016.5298.
  • Kluza E, van der Schaft DW, Hautvast PA, et al. Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett. 2010;10(1):52–58. doi: 10.1021/nl902659g.
  • Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183–192. doi: 10.1016/j.jconrel.2009.09.020.
  • Sharma G, Modgil A, Zhong T, et al. Influence of short-chain cell-penetrating peptides on transport of doxorubicin encapsulating receptor-targeted liposomes across brain endothelial barrier. Pharm Res. 2014;31(5):1194–1209. doi: 10.1007/s11095-013-1242-x.
  • Rastakhiz S, Yazdani M, Shariat S, et al. Preparation of nanoliposomes linked to HER2/neu-derived (P5) peptide containing MPL adjuvant as vaccine against breast cancer. J Cell Biochem. 2019;120(2):1294–1303. doi: 10.1002/jcb.27090.
  • Samson AAS, Park S, Kim SY, et al. Liposomal co-delivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. J Liposome Res. 2019;29(1):44–52. doi: 10.1080/08982104.2017.1420081.
  • Farzad N, Barati N, Momtazi-Borojeni AA, et al. P435 HER2/neu-derived peptide conjugated to liposomes containing DOPE as an effective prophylactic vaccine formulation for breast cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):665–673. doi: 10.1080/21691401.2019.1576702.
  • Sun YQ, Li XQ, Zhang LL, et al. Cell permeable NBD peptide-modified liposomes by hyaluronic acid coating for the synergistic targeted therapy of metastatic inflammatory breast cancer. Mol Pharm. 2019;16(3):1140–1155. doi: 10.1021/acs.molpharmaceut.8b01123.
  • Ju RJ, Cheng L, Qiu X, et al. Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J Drug Target. 2018;26(9):793–805. doi: 10.1080/1061186X.2018.1428809.
  • Cao DLG, Zhang XX, Akabar M, et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):181–191. doi: 10.1080/21691401.2018.1548470.
  • Vaidya T, Straubinger RM, Ait-Oudhia S. Development and evaluation of tri-functional immunoliposomes for the treatment of HER2 positive breast cancer. Pharm Res. 2018;35(5):95. doi: 10.1007/s11095-018-2365-x.
  • Elamir A, Ajith S, Al Sawaftah N, et al. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep. 2021;11(1):7545. doi: 10.1038/s41598-021-86860-5.
  • Belfiore L, Saunders DN, Ranson M, et al. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer. Pharmaceutics. 2020;12(7):641. doi: 10.3390/pharmaceutics12070641.
  • Li R, Peng Y, Pu YC, et al. Fructose and biotin co-modified liposomes for dual-targeting breast cancer. J Liposome Res. 2022;32(2):119–128. doi: 10.1080/08982104.2021.1894171.
  • Ma JZ, Zhuang HR, Zhuang ZX, et al. Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting. Artif Cells Nanomed Biotechnol. 2018;46:1864–1871.
  • Jin X, Zhou JP, Zhang ZH, et al. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artif Cells Nanomed Biotechnol. 2018;46(Suppl. 3):S931–S942. doi: 10.1080/21691401.2018.1518913.
  • Jiang H, Li ZP, Tian GX, et al. Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: preparation, characterization, and antitumor effects. Int J Nanomedicine. 2019;14:1789–1804. doi: 10.2147/IJN.S188971.
  • Poy D, Shahemabadi HE, Akbarzadeh A, et al. Carboplatin liposomal nanoparticles: preparation, characterization, and cytotoxicity effects on lung cancer in vitro environment. Int J Polym Mater Polym Biomater. 2018;67(6):367–370. doi: 10.1080/00914037.2017.1332624.
  • Yang L, Xin J, Zhang ZH, et al. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo. J Pharm Pharmacol. 2016;68(9):1109–1118. doi: 10.1111/jphp.12590.
  • Hamzawy MA, Abo-Youssef AM, Salem HF, et al. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv. 2017;24(1):599–607. doi: 10.1080/10717544.2016.1247924.
  • Song XL, Ju RJ, Xiao Y, et al. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int J Nanomedicine. 2017;12:7433–7451. doi: 10.2147/IJN.S141787.
  • Patel K, Bothiraja C, Mali A, et al. Investigation of sorafenib tosylate loaded liposomal dry powder inhaler for the treatment of non-small cell lung cancer. Part Sci Technol. 2021;39(8):990–999. doi: 10.1080/02726351.2021.1906367.
  • Wang SH, Gou JX, Wang Y, et al. Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer. Int J Nanomedicine. 2021;16:2357–2372. doi: 10.2147/IJN.S290263.
  • Rohilla S, Awasthi R, Mehta M, et al. Preparation and evaluation of gefitinib containing nanoliposomal formulation for lung cancer therapy. BioNanoScience. 2022;12(1):241–255. doi: 10.1007/s12668-022-00938-6.
  • Bisht S, Schlesinger M, Rupp A, et al. A liposomal formulation of the synthetic curcumin analog EF24 (Lipo-EF24) inhibits pancreatic cancer progression: towards future combination therapies. J Nanobiotechnology. 2016;14(1):57. doi: 10.1186/s12951-016-0209-6.
  • Marengo A, Forciniti S, Dando I, et al. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate–copper complex loaded into hyaluronic acid decorated liposomes. Biochim Biophys Acta Gen Subj. 2019;1863(1):61–72. doi: 10.1016/j.bbagen.2018.09.018.
  • Wang YB, Gao FH, Jiang XW, et al. Co-delivery of gemcitabine and mcl-1 SiRNA via cationic liposome-based system enhances the efficacy of chemotherapy in pancreatic cancer. J Biomed Nanotechnol. 2019;15(5):966–978. doi: 10.1166/jbn.2019.2762.
  • Xu HT, Paxton JW, Wu ZM. Development of long-circulating pH-sensitive liposomes to circumvent gemcitabine resistance in pancreatic cancer cells. Pharm Res. 2016;33(7):1628–1637. doi: 10.1007/s11095-016-1902-8.
  • Wang F, Zhang Z. Nanoformulation of apolipoprotein E3-tagged liposomal nanoparticles for the co-delivery of KRAS-siRNA and gemcitabine for pancreatic cancer treatment. Pharm Res. 2020;37(12):247. doi: 10.1007/s11095-020-02949-y.
  • Wei Y, Wang Y, Xia D, et al. Thermosensitive liposomal codelivery of HSA–paclitaxel and HSA–ellagic acid complexes for enhanced drug perfusion and efficacy against pancreatic cancer. ACS Appl Mater Interfaces. 2017;9(30):25138–25151. doi: 10.1021/acsami.7b07132.
  • Le UM, Hartman A, Pillai G. Enhanced selective cellular uptake and cytotoxicity of epidermal growth factor-conjugated liposomes containing curcumin on EGFR-overexpressed pancreatic cancer cells. J Drug Target. 2018;26(8):676–683. doi: 10.1080/1061186X.2017.1408114.
  • Gao J, Nesbitt H, Logan K, et al. An ultrasound responsive microbubble–liposome conjugate for targeted irinotecan-oxaliplatin treatment of pancreatic cancer. Eur J Pharm Biopharm. 2020;157:233–240. doi: 10.1016/j.ejpb.2020.10.012.
  • Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer. 2002;99(1):130–137. doi: 10.1002/ijc.10242.
  • Matsumura Y, Gotoh M, Muro K, et al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol. 2004;15(3):517–525. doi: 10.1093/annonc/mdh092.
  • Xiong D, Liu ZB, Bian TR, et al. GX1-mediated anionic liposomes carrying adenoviral vectors for enhanced inhibition of gastric cancer vascular endothelial cells. Int J Pharm. 2015;496(2):699–708. doi: 10.1016/j.ijpharm.2015.11.019.
  • Hong C, Wang D, Liang J, et al. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics. 2019;9(15):4437–4449. doi: 10.7150/thno.34953.
  • Yang F, Zheng Z, Zheng L, et al. SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells. Onco Targets Ther. 2018;11:6811–6825. doi: 10.2147/OTT.S182437.
  • Sun YX, Xie YZ, Tang H, et al. In vitro and in vivo evaluation of a novel estrogen-targeted PEGylated oxaliplatin liposome for gastric cancer. Int J Nanomedicine. 2021;16:8279–8303. doi: 10.2147/IJN.S340180.
  • Raza F, Evans L, Motallebi M, et al. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater. 2023;157:1–23. doi: 10.1016/j.actbio.2022.12.013.
  • Li H, Li X, Shi X, et al. Effects of magnetic dihydroartemisinin nano-liposome in inhibiting the proliferation of head and neck squamous cell carcinomas. Phytomedicine. 2019;56:215–228. doi: 10.1016/j.phymed.2018.11.007.
  • Lv B-H, Tan W, Shang X, et al. Evaluation of clinical effectiveness of paclitaxel and ursolic acid co-loaded liposomes as enhanced treatment for head and neck squamous cell carcinoma. Trop J Pharm Res. 2019;17(11):2115–2121. doi: 10.4314/tjpr.v17i11.1.
  • Wang YP, Liu IJ, Chung MJ, et al. Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral Oncol. 2020;106:104689. doi: 10.1016/j.oraloncology.2020.104689.
  • Zheng TT, Feng HH, Liu L, et al. Enhanced antiproliferative effect of resveratrol in head and neck squamous cell carcinoma using GE11 peptide conjugated liposome. Int J Mol Med. 2019;43(4):1635–1642. doi: 10.3892/ijmm.2019.4096.
  • Hassanzadeganroudsari M, Heydarinasab A, Khiyavi AA, et al. In vitro investigation of anticancer efficacy of carboplatin-loaded PEGylated nanoliposome particles on brain cancer cell lines. J Nanopart Res. 2019;21(6):124. doi: 10.1007/s11051-019-4562-x.
  • Lu YJ, Chuang EY, Cheng YH, et al. Thermosensitive magnetic liposomes for alternating magnetic field-inducible drug delivery in dual targeted brain tumor chemotherapy. Chem Eng J. 2019;373:720–733. doi: 10.1016/j.cej.2019.05.055.
  • Perini G, Giulimondi F, Palmieri V, et al. Inhibiting the growth of 3D brain cancer models with bio-coronated liposomal temozolomide. Pharmaceutics. 2021;13(3):378. doi: 10.3390/pharmaceutics13030378.
  • Gabay M, Weizman A, Zeineh N, et al. Liposomal carrier conjugated to APP-derived peptide for brain cancer treatment. Cell Mol Neurobiol. 2021;41(5):1019–1029. doi: 10.1007/s10571-020-00969-1.
  • Petrilli R, Eloy JO, Saggioro FP, et al. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J Control Release. 2018;283:151–162. doi: 10.1016/j.jconrel.2018.05.038.
  • Jose A, Labala S, Ninave KM, et al. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech. 2018;19(1):166–175. doi: 10.1208/s12249-017-0833-y.
  • Hu SC, Su YS, Lai YC, et al. Liposomal avicequinone-B formulations: aqueous solubility, physicochemical properties and apoptotic effects on cutaneous squamous cell carcinoma cells. Phytomedicine. 2019;58:152870. doi: 10.1016/j.phymed.2019.152870.
  • Marwah M, Perrie Y, Badhan RKS, et al. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J Liposome Res. 2020;30(2):136–149. doi: 10.1080/08982104.2019.1604746.
  • Calienni MN, Febres-Molina C, Llovera RE, et al. Nanoformulation for potential topical delivery of vismodegib in skin cancer treatment. Int J Pharm. 2019;565:108–122. doi: 10.1016/j.ijpharm.2019.05.002.
  • Yin X, Xiao Y, Han L, et al. Ceramide-fabricated co-loaded liposomes for the synergistic treatment of hepatocellular carcinoma. AAPS PharmSciTech. 2018;19(5):2133–2143. doi: 10.1208/s12249-018-1005-4.
  • Cheng Y, Zhao PX, Wu SP, et al. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int J Pharm. 2018;545(1–2):261–273. doi: 10.1016/j.ijpharm.2018.05.007.
  • Wang Y, Ding RH, Zhang Z, et al. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Int J Pharm. 2021;602:120628. doi: 10.1016/j.ijpharm.2021.120628.
  • Qiu F, Zhao X. In vivo antitumor activity of liposome–plasmid DNA encoding mutant survivin-T34A in cervical cancer. Mol Med Rep. 2018;18(1):841–847. doi: 10.3892/mmr.2018.9007.
  • Wang WY, Cao YX, Zhou X, et al. Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy. Drug Des Devel Ther. 2019;13:2205–2213. doi: 10.2147/DDDT.S205787.
  • Akhtar A, Ghali L, Wang SX, et al. Optimisation of folate-mediated liposomal encapsulated arsenic trioxide for treating HPV-positive cervical cancer cells in vitro. Int J Mol Sci. 2019;20(9):2156. doi: 10.3390/ijms20092156.
  • Wang SQ, Xu LN, Zhang ZQ, et al. Overexpressed miR-375-loaded restrains development of cervical cancer through down-regulation of frizzled class receptor 4 (FZD4) with liposome nanoparticle as a carrier. J Biomed Nanotechnol. 2021;17(9):1882–1889. doi: 10.1166/jbn.2021.3145.
  • Smith HJ. Tumor treatment using cytokines and cancer drugs. United States patent US 16/926,767. 2022.
  • Hossann M, Wedmann BC, Lindner LH, et al. Liposome formulations. Germany patent PCT/EP/2021/068568. 2022.
  • Drummond DC, Geng B, Kirpotin DB, et al. Inhibiting ataxia telangiectasia and Rad3-related protein (ATR). United States patent US 21182826.4. 2022.
  • Pillarsetty NVK, Larson SM, Lee S-G. Bone marrow-, reticuloendothelial system-, and/or lymph node-targeted radiolabeled liposomes and methods of their diagnostic and therapeutic use. Google Patents. 2022.
  • Oefelein MG, Venkatesan N, Swarnakar NK, et al. Liposomal enhanced intra-peritoneal chemotherapy. United States patent US 17/290,329. 2022.
  • Kan P, Tseng Y-L, Han-Chun O, et al. Controlled drug release liposome compositions and methods thereof. Google Patents. 2019.
  • Vikbjerg AF, Petersen SA, Melander F, et al. Liposomes for drug delivery and methods for preparation thereof. Google Patents. 2021.
  • Santos A, Frost P. Liposome formulations. Google Patents. 2020.
  • Moses MA, Guo P, Yang J, et al. Engineered liposomes as cancer-targeted therapeutics. Google Patents. 2022.
  • Cancedda L, Ben-Ari Y, Constestabile A. Modulators of intracellular chloride concentration for treating down syndrome. United States patent US 2016/0312229 A1. 2017.
  • Ekdawi SN, Jaffray DA, Allen C. Nanomedicine and tumor heterogeneity: concept and complex reality. Nano Today. 2016;11(4):402–414. doi: 10.1016/j.nantod.2016.06.006.
  • Moghimi SM, Farhangrazi ZS. Just so stories: the random acts of anti-cancer nanomedicine performance. Nanomedicine. 2014;10(8):1661–1666. doi: 10.1016/j.nano.2014.04.011.
  • Yan W, Leung SSY, To KKW. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine. 2020;15(3):303–318. doi: 10.2217/nnm-2019-0308.
  • Lammers T, Kiessling F, Hennink WE, et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175–187. doi: 10.1016/j.jconrel.2011.09.063.
  • Fathi S, Oyelere AK. Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med Chem. 2016;8(17):2091–2112. doi: 10.4155/fmc-2016-0135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.