146
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Vesicular approach of cubosomes, its components, preparation techniques, evaluation and their appraisal for targeting cancer cells

, ORCID Icon, ORCID Icon, &
Pages 368-384 | Received 16 May 2023, Accepted 14 Oct 2023, Published online: 24 Oct 2023

References

  • Zugazagoitia J, Guedes C, Ponce S, et al. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–1566. doi: 10.1016/j.clinthera.2016.03.026.
  • Compton C, Compton C. 2020. Cancer initiation, promotion, and progression and the acquisition of key behavioral traits. Cham: Springer.
  • Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3(3):3279–3330. doi: 10.3390/cancers3033279.
  • Raniolo S, Vindigni G, Ottaviani A, et al. Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages. Nanomedicine. 2018;14(4):1181–1190. doi: 10.1016/j.nano.2018.02.002.
  • Timucin AC, Basaga H, Kutuk O. Selective targeting of antiapoptotic BCL‐2 proteins in cancer. Med Res Rev. 2019;39(1):146–175. doi: 10.1002/med.21516.
  • Manish G, Vimukta S. Targeted drug delivery system: a review. Res J Chem Sci. 2011;1:135–138.
  • Khan I, Khan M, Umar MN, et al. Nanobiotechnology and its applications in drug delivery system: a review. IET Nanobiotechnol. 2015;9(6):396–400. doi: 10.1049/iet-nbt.2014.0062.
  • Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2007;5(1):561–573. doi: 10.4314/tjpr.v5i1.14634.
  • Shan X, Gong X, Li J, et al. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B. 2022;12(7):3028–3048. doi: 10.1016/j.apsb.2022.02.025.
  • Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today. 2019;25:85–98. doi: 10.1016/j.nantod.2019.02.005.
  • Gowd V, Ahmad A, Tarique M, et al. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol. 2022;86(Pt 2):624–644. doi: 10.1016/j.semcancer.2022.03.026.
  • Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy. Proc Natl Acad Sci U S A. 2015;112(47):14467–14472. doi: 10.1073/pnas.1508516112.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. doi: 10.1002/btm2.10143.
  • Soares S, Sousa J, Pais A, et al. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360. doi: 10.3389/fchem.2018.00360.
  • Allegra A, Gioacchino MD, Tonacci A, et al. Nanomedicine for immunotherapy targeting hematological malignancies: current approaches and perspective. Nanomaterials. 2021;11(11):2792. doi: 10.3390/nano11112792.
  • Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20(5):321–334. doi: 10.1038/s41577-019-0269-6.
  • Tostanoski LH, Gosselin EA, Jewell CM. Engineering tolerance using biomaterials to target and control antigen presenting cells. Discov Med. 2016;21(117):403–410.
  • Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release. 2012;162(1):45–55. doi: 10.1016/j.jconrel.2012.05.051.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–427. doi: 10.1016/j.ejps.2012.12.006.
  • Waqar MA, Zaman M, Hameed H, et al. Formulation, characterization, and evaluation of β-Cyclodextrin functionalized hypericin loaded nanocarriers. ACS Omega. 2023;8(41):38191–38203. doi: 10.1021/acsomega.3c04444.
  • Zhang M, Liu E, Cui Y, et al. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 2017;14(3):212–227. doi: 10.20892/j.issn.2095-3941.2017.0054.
  • Waqar MA, Zaman M, Hameed H, et al. Ethosomes: a novel approach for the delivery of drug. IJPIHS. 2023;4:31–46.
  • Bonacchi S, Genovese D, Juris R, et al. Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed Engl. 2011;50(18):4056–4066. doi: 10.1002/anie.201004996.
  • Rampazzo E, Voltan R, Petrizza L, et al. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. Nanoscale. 2013;5(17):7897–7905. doi: 10.1039/c3nr02563b.
  • Angelico R, Ceglie A, Colafemmina G, et al. Biocompatible lecithin organogels: Structure and phase equilibria. Langmuir. 2005;21(1):140–148. doi: 10.1021/la047974f.
  • Chong JY, Mulet X, Waddington LJ, et al. Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: high throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Soft Matter. 2011;7(10):4768–4777. doi: 10.1039/c1sm05181d.
  • Hiwale P, Lampis S, Conti G, et al. In vitro release of lysozyme from gelatin microspheres: effect of cross-linking agents and thermos reversible gel as suspending medium. Biomacromolecules. 2011;12(9):3186–3193. doi: 10.1021/bm200679w.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18. doi: 10.1016/j.colsurfb.2009.09.001.
  • Murgia S, Fadda P, Colafemmina G, et al. Characterization of the solutol® HS15/water phase diagram and the impact of the Δ9-tetrahydrocannabinol solubilization. J Colloid Interface Sci. 2013;390(1):129–136. doi: 10.1016/j.jcis.2012.08.068.
  • Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41(7):2575–2589. doi: 10.1039/c1cs15248c.
  • Ling D, Hyeon T. Iron oxide nanoparticles: chemical design of biocompatible iron oxide nanoparticles for medical applications (small 9–10/2013). Small. 2013;9(9–10):1449–1449. doi: 10.1002/smll.201370057.
  • Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly (amidoamine)(PAMAM)− folic acid conjugates. J Med Chem. 2010;53(8):3262–3272. doi: 10.1021/jm901910j.
  • Klostranec JM, Chan WC. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater. 2006;18(15):1953–1964. doi: 10.1002/adma.200500786.
  • Nam J, Won N, Bang J, et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev. 2013;65(5):622–648. doi: 10.1016/j.addr.2012.08.015.
  • Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010;39(11):4326–4354. doi: 10.1039/b915139g.
  • Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10(1):35–43. doi: 10.1016/S1359-6446(04)03276-3.
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Delivery Rev. 2012;64:102–115. doi: 10.1016/j.addr.2012.09.030.
  • Munir M, Zaman M, Waqar MA, et al. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J Liposome Res. 2023:1–16. doi: 10.1080/08982104.2023.2221354.
  • Eloy JO, DE Souza MC, Petrilli R, et al. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces. 2014;123:345–363. doi: 10.1016/j.colsurfb.2014.09.029.
  • Tannous M, Caldera F, Hoti G, et al. Drug-encapsulated cyclodextrin nanosponges. Methods Mol Biol. 2021;2207:247–283.
  • Fernandes M, Lopes I, Magalhães L, et al. Novel concept of exosome-like liposomes for the treatment of Alzheimer’s disease. J Control Release. 2021;336:130–143. doi: 10.1016/j.jconrel.2021.06.018.
  • Gao J, Fan K, Jin Y, et al. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur J Pharm Sci. 2019;140:105070. doi: 10.1016/j.ejps.2019.105070.
  • Jimenez J, Washington MA, Resnick JL, et al. A sustained release cysteamine microsphere/thermoresponsive gel eyedrop for corneal cystinosis improves drug stability. Drug Deliv Transl Res. 2021;11(5):2224–2238. doi: 10.1007/s13346-020-00890-6.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi: 10.1016/j.addr.2015.09.012.
  • Patel S, Patel M, Patel N. Need, development and application of virosomal system in medicine. IJRPNS. 2010;3(3):1065–1074. doi: 10.37285/ijpsn.2010.3.3.4.
  • Tadwee IK, Gore S, Giradkar P. Advances in topical drug delivery system: a review. Int J Pharm Res All Sci. 2012;1:14–23.
  • Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3–9. doi: 10.15171/apb.2017.002.
  • Gill B, Singh J, Sharma V, et al. Emulsomes: an emerging vesicular drug delivery system. Asian J Pharm. 2012;6(2):87. doi: 10.4103/0973-8398.102930.
  • Semalty A, Semalty M, Rawat BS, et al. Pharmacosomes: the lipid-based new drug delivery system. Expert Opin Drug Deliv. 2009;6(6):599–612. doi: 10.1517/17425240902967607.
  • Saraf S, Rathi R, Deep Kaur C, et al. Sphingosomes a novel approach to vesicular drug delivery. Asian J Sci Res. 2010;4(1):1–15. doi: 10.3923/ajsr.2011.1.15.
  • Jain S, Tiwary AK, Sapra B, et al. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. Aaps Pharmscitech. 2007;8(4):E111. doi: 10.1208/pt0804111.
  • Manosroi A, Jantrawut P, Khositsuntiwong N, et al. Novel elastic nanovesicles for cosmeceutical and pharmaceutical applications. Chiang Mai J Sci. 2009;36:168–178.
  • Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomed. 2013;8:3171–3186. doi: 10.2147/IJN.S33048.
  • Khalid H, Batool S, Din FU, et al. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. R Soc Open Sci. 2022;9(10):220428. doi: 10.1098/rsos.220428.
  • Jain V, Lovanshi R, Khan AI. Formulation development and evaluation of niosomal gel of tazarotene for treatment of psoriasis. JMPAS. 2021;10(1):2664–2670. doi: 10.22270/jmpas.v10i1.1030.
  • Jones DS, Moss GP. Themed issue: recent advances in transdermal drug delivery. J Pharm Pharmacol. 2010;62(6):669–670. doi: 10.1211/jpp.62.06.0001.
  • Pan X, Han K, Peng X, et al. Nanostructed cubosomes as advanced drug delivery system. Curr Pharm Des. 2013;19(35):6290–6297. doi: 10.2174/1381612811319350006.
  • Varghese R, Salvi S, Sood P, et al. Cubosomes in cancer drug delivery: a review. Colloid Interface Sci Commun. 2022;46:100561. doi: 10.1016/j.colcom.2021.100561.
  • Boge L, Hallstensson K, Ringstad L, et al. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm. 2019;134:60–67. doi: 10.1016/j.ejpb.2018.11.009.
  • Rizwan SB, Boyd BJ. 2015. Cubosomes: structure, preparation and use as an antigen delivery system. In: Foged C, Rades T, Perrie Y, Hook S, editors. Subunit vaccine delivery. New York: Springer.
  • Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87–100. doi: 10.3109/10717544.2013.838077.
  • Kaasgaard T, Drummond CJ. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys. 2006;8(43):4957–4975. doi: 10.1039/b609510k.
  • Van Oss C, Good R, Chaudhury M. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci. 1986;111(2):378–390. doi: 10.1016/0021-9797(86)90041-X.
  • Hyde ST. Identification of lyotropic liquid crystalline mesophases. In: Holmberg K, editor. Handbook of applied surface and colloid chemistry. Vol. 2. West Sussex: John Wiley & Sons; 2001; p. 299–332.
  • Achouri D, Alhanout K, Piccerelle P, et al. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–1617. doi: 10.3109/03639045.2012.736515.
  • Barauskas J, Johnsson M, Tiberg F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett. 2005b;5(8):1615–1619. doi: 10.1021/nl050678i.
  • Rarokar NR, Saoji SD, Raut NA, et al. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS Pharmscitech. 2016;17(2):436–445. doi: 10.1208/s12249-015-0369-y.
  • Seo SR, Kim J-C. Preparation of cubosomes containing gold nanoparticles and drug release behavior under light irradiation. J Control Release. 2013;172(1):e63–e64. doi: 10.1016/j.jconrel.2013.08.131.
  • Esposito E, Cortesi R, Drechsler M, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22(12):2163–2173. doi: 10.1007/s11095-005-8176-x.
  • Demurtas D, Guichard P, Martiel I, et al. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat Commun. 2015;6(1):8915. doi: 10.1038/ncomms9915.
  • Huang Y, Gui S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv. 2018;8(13):6978–6987. doi: 10.1039/c7ra12008g.
  • Rarokar N, Khedekar P. Cubosomes: a vehicle for delivery of various therapeutic agents. MOJ Toxicol. 2018;4:19–21.
  • Barauskas J, Johnsson M, Joabsson F, et al. Cubic phase nanoparticles (cubosome): principles for controlling size, structure, and stability. Langmuir. 2005a;21(6):2569–2577. doi: 10.1021/la047590p.
  • Anbarasan B, Grace XF, Shanmuganathan S. An overview of cubosomes—smart drug delivery system. Sri Ramachandra J. Med. 2015;8:1–4.
  • Gan L, Han S, Shen J, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1-2):179–187. doi: 10.1016/j.ijpharm.2010.06.015.
  • Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789–801. doi: 10.1016/j.drudis.2016.01.004.
  • Aleandri S, Bandera D, Mezzenga R, et al. Biotinylated cubosomes: a versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir. 2015;31(46):12770–12776. doi: 10.1021/acs.langmuir.5b03469.
  • Clogston J, Caffrey M. Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J Control Release. 2005;107(1):97–111. doi: 10.1016/j.jconrel.2005.05.015.
  • Thadanki M, Kumari PS, Prabha KS. Overview of cubosomes: a nano particle. Int J Res Pharm Chem. 2011;1:535–541.
  • Bhosale RR, Osmani RA, Harkare BR, et al. Cubosomes: the inimitable nanoparticulate drug carriers. Sch Acad J Pharm. 2013;2:481–486.
  • Kulkarni CV, Wachter W, Iglesias-Salto G, et al. Monoolein: a magic lipid? Phys Chem Chem Phys. 2011;13(8):3004–3021. doi: 10.1039/c0cp01539c.
  • Chong JY, Mulet X, Boyd BJ, et al. 2015. Steric stabilizers for cubic phase lyotropic liquid crystal nanodispersions (cubosomes). APLBL. 21:131–187.
  • Kaur SD, Singh G, Singh G, et al. Cubosomes as potential nanocarrier for drug delivery: a comprehensive review. JPRI. 2021;33:118–135. doi: 10.9734/jpri/2021/v33i31B31698.
  • Van Dalsen L, Weichert D, Caffrey M. In meso crystallogenesis. Compatibility of the lipid cubic phase with the synthetic digitonin analogue, glyco-diosgenin. J Appl Crystallogr. 2020;53(Pt 2):530–535. doi: 10.1107/S1600576720002289.
  • Iskandar WFNW, Salim M, Hashim R, et al. Stability of cubic phase and curvature tuning in the lyotropic system of branched chain galactose-based glycolipid by amphiphilic additives. Colloids Surf A. 2021;623:126697. doi: 10.1016/j.colsurfa.2021.126697.
  • Akbar S, Anwar A, Ayish A, et al. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci. 2017;101:31–42. doi: 10.1016/j.ejps.2017.01.035.
  • Wang X, Zhang Y, Huang J, et al. A novel phytantriol-based lyotropic liquid crystalline gel for efficient ophthalmic delivery of pilocarpine nitrate. AAPS PharmSciTech. 2019;20(1):1–14. doi: 10.1208/s12249-018-1248-0.
  • Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B. 2021;11(4):871–885. doi: 10.1016/j.apsb.2021.02.013.
  • Barkate AR, Gadekar DN. Cubosomes: the novel drug delivery system. World J Pharm Res. 2020;9:1170–1185.
  • Tajik Ahmadabad B. 2017. Physicochemical characterization of novel functionalized lyotropic liquid crystalline carriers for therapeutic nucleotide delivery. Australia: University of Melbourne Parkville.
  • Tan A, Hong L, Du JD, et al. Self‐assembled nanostructured lipid systems: is there a link between structure and cytotoxicity? Adv Sci. 2019;6(3):1801223. doi: 10.1002/advs.201801223.
  • Wörle G, Drechsler M, Koch MH, et al. Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm. 2007;329(1-2):150–157. doi: 10.1016/j.ijpharm.2006.08.023.
  • Van‘t Hag L, Gras SL, Conn CE, et al. Lyotropic liquid crystal engineering moving beyond binary compositional space–ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev. 2017;46(10):2705–2731. doi: 10.1039/c6cs00663a.
  • Wadsten-Hindrichsen P, Bender J, Unga J, et al. Aqueous self-assembly of phytantriol in ternary systems: effect of monoolein, distearoylphosphatidylglycerol and three water-miscible solvents. J Colloid Interface Sci. 2007;315(2):701–713. doi: 10.1016/j.jcis.2007.07.011.
  • Esposito E, Eblovi N, Rasi S, et al. Lipid-based supramolecular systems for topical application: a preformulatory study. Aaps Pharmsci. 2003;5(4):E30–E76. doi: 10.1208/ps050430.
  • Spicer PT, Hayden KL, Lynch ML, et al. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17(19):5748–5756. doi: 10.1021/la010161w.
  • Mezzenga R, Meyer C, Servais C, et al. Shear rheology of lyotropic liquid crystals: a case study. Langmuir. 2005;21(8):3322–3333. doi: 10.1021/la046964b.
  • Um JY, Chung H, Kim KS, et al. In vitro cellular interaction and absorption of dispersed cubic particles. Int J Pharm. 2003;253(1-2):71–80. doi: 10.1016/s0378-5173(02)00673-7.
  • Dandekar DV, Gaikar V. Hydrotropic extraction of curcuminoids from turmeric. Sep Sci Technol. 2003;38(5):1185–1215. doi: 10.1081/SS-120018130.
  • Maheshwari R, Chaturvedi S, Jain N. Novel application of hydrotropic solubilization in the analysis of some NSAIDs and their solid dosage forms. Indian J Pharm Sci. 2007;69(1):101. doi: 10.4103/0250-474X.32117.
  • Nielsen LH, Rades T, Boyd B, et al. Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin. Eur J Pharm Biopharm. 2017;118:13–20. doi: 10.1016/j.ejpb.2016.12.008.
  • Avachat AM, Parpani SS. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf B Biointerfaces. 2015;126:87–97. doi: 10.1016/j.colsurfb.2014.12.014.
  • Spicer PT, Small WB, Small WB, et al. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res. 2002;4(4):297–311. doi: 10.1023/A:1021184216308.
  • Rosa A, Murgia S, Putzu D, et al. Monoolein-based cubosomes affect lipid profile in HeLa cells. Chem Phys Lipids. 2015;191:96–105. doi: 10.1016/j.chemphyslip.2015.08.017.
  • Murgia S, Falchi AM, Meli V, et al. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf B Biointerfaces. 2015;129:87–94. doi: 10.1016/j.colsurfb.2015.03.025.
  • Mansour M, EL Ezz TAA, Fattoh FN, et al. Delineating the usage of dexamethasone-loaded cubosomes as a therapeutic armamentarium for hearing loss versus its protective effect: in-vitro and in-vivo animal study. J Drug Deliv Sci Technol. 2021;61:102244. doi: 10.1016/j.jddst.2020.102244.
  • Ou N, Sun Y, Zhou S, et al. Evaluation of optimum conditions for achyranthes bidentata polysaccharides encapsulated in cubosomes and immunological activity in vitro. Int J Biol Macromol. 2018;109:748–760. doi: 10.1016/j.ijbiomac.2017.11.064.
  • Abdelrahman FE, Elsayed I, Gad MK, et al. Investigating the cubosomal ability for transnasal brain targeting: in vitro optimization, ex vivo permeation and in vivo biodistribution. Int J Pharm. 2015;490(1-2):281–291. doi: 10.1016/j.ijpharm.2015.05.064.
  • Janakiraman K, Krishnaswami V, Sethuraman V, et al. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl Nanosci. 2019;9(8):1781–1796. doi: 10.1007/s13204-019-00976-9.
  • Nasr M, Dawoud M. Sorbitol based powder precursor of cubosomes as an oral delivery system for improved bioavailability of poorly water soluble drugs. J Drug Delivery Sci Technol. 2016;35:106–113. doi: 10.1016/j.jddst.2016.06.011.
  • VON Halling Laier C, Gibson B, VAN DE Weert M, et al. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int J Pharm. 2018;550(1-2):35–44. doi: 10.1016/j.ijpharm.2018.08.036.
  • Mertins O, Mathews PD, Angelova A. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials. 2020;10(5):963. doi: 10.3390/nano10050963.
  • Malheiros B, DE Castro RD, Lotierzo MC, et al. Influence of hexadecylphosphocholine (miltefosine) in phytantriol-based cubosomes: a structural investigation. Colloids Surf A. 2022;632:127720. doi: 10.1016/j.colsurfa.2021.127720.
  • Chen H, Fan Y, Zhang N, et al. Fluorescent polymer cubosomes and hexosomes with aggregation-induced emission. Chem Sci. 2021;12(15):5495–5504. doi: 10.1039/d1sc00270h.
  • Almoshari Y. Development, therapeutic evaluation and theranostic applications of cubosomes on cancers: an updated review. Pharmaceutics. 2022;14(3):600. doi: 10.3390/pharmaceutics14030600.
  • Oliveira C, Ferreira CJ, Sousa M, et al. A versatile nanocarrier—cubosomes, characterization, and applications. Nanomaterials. 2022;12(13):2224. doi: 10.3390/nano12132224.
  • Palma AS, Casadei BR, Lotierzo MC, et al. A short review on the applicability and use of cubosomes as nanocarriers. Biophys Rev. 2023;15(4):553–567. doi: 10.1007/s12551-023-01089-y.
  • Zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm. 1998;45(2):149–155. doi: 10.1016/s0939-6411(97)00150-1.
  • Fong C, Zhai J, Drummond CJ, et al. Micellar Fd3m cubosomes from monoolein–long chain unsaturated fatty acid mixtures: Stability on temperature and pH response. J Colloid Interface Sci. 2020;566:98–106. doi: 10.1016/j.jcis.2020.01.041.
  • Shah J, Nair AB, Jacob S, et al. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics. 2019;11(5):230. doi: 10.3390/pharmaceutics11050230.
  • Rao SV, Sravya BN, Padmalatha K. A review on cubosome: the novel drug delivery system. GSC Biol Pharm Sci. 2018;5:76–81.
  • Almoshari Y, Alam MI, Bakkari MA, et al. Formulation, characterization, and evaluation of doxorubicin-loaded cubosome as a cytotoxic potentiator against HCT-116 colorectal cancer cells. IJPER. 2022;56(3):723–731. doi: 10.5530/ijper.56.3.121.
  • Khan S, Madni A, Rahim MA, et al. Enhanced in vitro release and permeability of glibenclamide by proliposomes: Development, characterization and histopathological evaluation. J Drug Delivery Sci Technol. 2021;63:102450. doi: 10.1016/j.jddst.2021.102450.
  • Zhai J, Yap SL, Drummond CJ, et al. Controlling the pH dependent transition between monoolein Fd3m micellar cubosomes and hexosomes using fatty acetate and fatty acid additive mixtures. J Colloid Interface Sci. 2022;607(Pt 1):848–856. doi: 10.1016/j.jcis.2021.08.173.
  • Latif MS, Al-Harbi FF, Nawaz A, et al. Formulation and evaluation of hydrophilic polymer based methotrexate patches: in vitro and in vivo characterization. Polymers. 2022;14(7):1310. doi: 10.3390/polym14071310.
  • Cytryniak A, Nazaruk E, Bilewicz R, et al. Lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177Lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials. 2020;10(11):2272. doi: 10.3390/nano10112272.
  • Cisterna BA, Kamaly N, Choi WI, et al. Targeted nanoparticles for colorectal cancer. Nanomedicine. 2016;11(18):2443–2456. doi: 10.2217/nnm-2016-0194.
  • Hu C-MJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1(2):323–334. doi: 10.4155/tde.10.13.
  • Barani M, Bilal M, Rahdar A, et al. Nanodiagnosis and nanotreatment of colorectal cancer: an overview. J Nanopart Res. 2021;23(1):25. doi: 10.1007/s11051-020-05129-6.
  • Saber MM, Al-Mahallawi AM, Nassar NN, et al. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer. 2018;18(1):822. doi: 10.1186/s12885-018-4727-5.
  • Magdy M, Almahallawi A, Nassar N, et al. Pluronic based cubosomes enhance metformin cytotoxicity in Colon cancer cell lines. Clin Ther. 2017;39(8):e27. doi: 10.1016/j.clinthera.2017.05.082.
  • Radbeh Z, Asefi N, Hamishehkar H, et al. Novel carriers ensuring enhanced anti-cancer activity of cornus mas (cornelian cherry) bioactive compounds. Biomed Pharmacother. 2020;125:109906. doi: 10.1016/j.biopha.2020.109906.
  • Jin X, Zhang Z-H, Li S-L, et al. A nanostructured liquid crystalline formulation of 20 (S)-protopanaxadiol with improved oral absorption. Fitoterapia. 2013;84:64–71. doi: 10.1016/j.fitote.2012.09.013.
  • Dorling L, Carvalho S, Allen J, et al. Breast cancer risk genes: association analysis in more than 113,000 women. N Engl J Med. 2021;384(5):428–439. doi: 10.1056/NEJMoa1913948.
  • Hussain Z, Khan JA, Murtaza S. Nanotechnology: an emerging therapeutic option for breast cancer. Crit Rev Eukaryot Gene Expr. 2018;28:163–175.
  • Astolfi P, Giorgini E, Gambini V, et al. Lyotropic liquid-crystalline nanosystems as drug delivery agents for 5-fluorouracil: structure and cytotoxicity. Langmuir. 2017;33(43):12369–12378. doi: 10.1021/acs.langmuir.7b03173.
  • Mehanna MM, Sarieddine R, Alwattar JK, et al. Anticancer activity of thymoquinone cubic phase nanoparticles against human breast cancer: formulation, cytotoxicity and subcellular localization. Int J Nanomed. 2020;15:9557–9570. doi: 10.2147/IJN.S263797.
  • Leiter U, Keim U, Garbe C. Epidemiology of skin cancer: update 2019. Adv Exp Med Biol. 2020;1268:123–139.
  • Kalal BS, Upadhya D, Pai VR. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev. 2017;11(1):326. doi: 10.4081/oncol.2017.[28382191.
  • Zhai J, Tan FH, Luwor RB, et al. In vitro and in vivo toxicity and biodistribution of paclitaxel-loaded cubosomes as a drug delivery nanocarrier: a case study using an A431 skin cancer xenograft model. ACS Appl Bio Mater. 2020;3(7):4198–4207. doi: 10.1021/acsabm.0c00269.
  • Kurangi B, Jalalpure S, Jagwani S. Formulation and evaluation of resveratrol loaded cubosomal nanoformulation for topical delivery. Curr Drug Deliv. 2021;18(5):607–619. doi: 10.2174/1567201817666200902150646.
  • Yuan Y-G, Peng Q-L, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomed. 2017;12:6487–6502. doi: 10.2147/IJN.S135482.
  • Fahmy UA, Fahmy O, Alhakamy NA. Optimized icariin cubosomes exhibit augmented cytotoxicity against SKOV-3 ovarian cancer cells. Pharmaceutics. 2020;13(1):20. doi: 10.3390/pharmaceutics13010020.
  • Zhai J, Luwor RB, Ahmed N, et al. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl Mater Interfaces. 2018;10(30):25174–25185. doi: 10.1021/acsami.8b08125.
  • Shafabakhsh R, Reiter RJ, Mirzaei H, et al. Melatonin: a new inhibitor agent for cervical cancer treatment. J Cell Physiol. 2019;234(12):21670–21682. doi: 10.1002/jcp.28865.
  • Bade BC, Cruz CSD. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020;41(1):1–24. doi: 10.1016/j.ccm.2019.10.001.
  • Sharma P, Mehta M, Dhanjal DS, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019;309:108720. doi: 10.1016/j.cbi.2019.06.033.
  • Patil SM, Sawant SS, Kunda NK. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int J Pharm. 2021;607:121046. doi: 10.1016/j.ijpharm.2021.121046.
  • Sethuraman V, Janakiraman K, Krishnaswami V, et al. pH responsive delivery of lumefantrine with calcium phosphate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chem Phys Lipids. 2019;224:104763. doi: 10.1016/j.chemphyslip.2019.03.016.
  • Anwanwan D, Singh SK, Singh S, et al. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188314. doi: 10.1016/j.bbcan.2019.188314.
  • Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015;5(1):79–88. doi: 10.1016/j.apsb.2014.12.001.
  • Saber S, Nasr M, Saad AS, et al. Albendazole-loaded cubosomes interrupt the ERK1/2-HIF-1α-p300/CREB axis in mice intoxicated with diethylnitrosamine: a new paradigm in drug repurposing for the inhibition of hepatocellular carcinoma progression. Biomed Pharmacother. 2021;142:112029. doi: 10.1016/j.biopha.2021.112029.
  • Abdel-Bar HM, Abd EL Basset Sanad R. Endocytic pathways of optimized resveratrol cubosomes capturing into human hepatoma cells. Biomed Pharmacother. 2017;93:561–569. doi: 10.1016/j.biopha.2017.06.093.
  • Luo Q, Lin T, Zhang CY, et al. A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: preparation, cytotoxicity and intracellular uptake. Int J Pharm. 2015;493(1-2):30–39. doi: 10.1016/j.ijpharm.2015.07.036.
  • Hasan M, Khatun A, Fukuta T, et al. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev. 2020;154–155:227–235. doi: 10.1016/j.addr.2020.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.