132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Astragaloside IV-induced BMSC exosomes promote neovascularization and protect cardiac function in myocardial infarction mice via the miR-411/HIF-1α axis

, &
Pages 452-463 | Received 29 Aug 2023, Accepted 07 Dec 2023, Published online: 25 Dec 2023

References

  • Chen B, Luo L, Wei X, et al. M1 bone marrow-derived macrophage-derived extracellular vesicles inhibit angiogenesis and myocardial regeneration following myocardial infarction via the MALAT1/MicroRNA-25-3p/CDC42 axis. Oxid Med Cell Longev. 2021;2021:9959746. doi: 10.1155/2021/9959746.
  • Sun J, Shen H, Shao L, et al. HIF-1alpha overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther. 2020;11(1):373. doi: 10.1186/s13287-020-01881-7.
  • Fu WB, Wang WE, Zeng CY. Wnt signaling pathways in myocardial infarction and the therapeutic effects of wnt pathway inhibitors. Acta Pharmacol Sin. 2019;40(1):9–12. doi: 10.1038/s41401-018-0060-4.
  • Mao Q, Liang XL, Zhang CL, et al. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther. 2019;10(1):393. doi: 10.1186/s13287-019-1522-4.
  • Doenst T, Haverich A, Serruys P, et al. PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. J Am Coll Cardiol. 2019;73(8):964–976. doi: 10.1016/j.jacc.2018.11.053.
  • Mackman N, Bergmeier W, Stouffer GA, et al. Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov. 2020;19(5):333–352. doi: 10.1038/s41573-020-0061-0.
  • Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther. 2022;7:78.
  • Zheng H, Liang X, Han Q, et al. Hemin enhances the cardioprotective effects of mesenchymal stem cell-derived exosomes against infarction via amelioration of cardiomyocyte senescence. J Nanobiotechnol. 2021;19(1):332. doi: 10.1186/s12951-021-01077-y.
  • Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 2019;23(11):7617–7631. doi: 10.1111/jcmm.14635.
  • Chen G, Wang M, Ruan Z, et al. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci. 2021;280:119742. doi: 10.1016/j.lfs.2021.119742.
  • Zhang X, Qu H, Yang T, et al. Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway. Cell Cycle. 2022;21(21):2309–2322. doi: 10.1080/15384101.2022.2093598.
  • Zheng Q, Zhu JZ, Bao XY, et al. A preclinical systematic review and meta-analysis of astragaloside IV for myocardial ischemia/reperfusion injury. Front Physiol. 2018;9:795. doi: 10.3389/fphys.2018.00795.
  • Shi H, Zhou P, Gao G, et al. Astragaloside IV prevents acute myocardial infarction by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway. J Food Biochem. 2021;45(7):e13757. doi: 10.1111/jfbc.13757.
  • Cheng S, Zhang X, Feng Q, et al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/akt signaling pathway. Life Sci. 2019;227:82–93. doi: 10.1016/j.lfs.2019.04.040.
  • Sha Z, Liu W, Jiang T, et al. Astragaloside IV induces the protective effect of bone marrow mesenchymal stem cells derived exosomes in acute myocardial infarction by inducing angiogenesis and inhibiting apoptosis. Biotechnol Genet Eng Rev. 2023:1–18. doi: 10.1080/02648725.2023.2194087.
  • Shariati A, Nemati R, Sadeghipour Y, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier. Eur J Cell Biol. 2020;99(6):151097. doi: 10.1016/j.ejcb.2020.151097.
  • Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol. 2015;12(3):135–142. doi: 10.1038/nrcardio.2014.207.
  • Salic K, De Windt LJ. MicroRNAs as biomarkers for myocardial infarction. Curr Atheroscler Rep. 2012;14(3):193–200. doi: 10.1007/s11883-012-0238-z.
  • Nugroho AB, Stafford N, Zi M, et al. Micro RNA-411 expression improves cardiac phenotype following myocardial infarction in mice. JACC Basic Transl Sci. 2022;7(9):859–875. doi: 10.1016/j.jacbts.2022.05.008.
  • Zhang X, He X, Jing H, et al. Neonatal rabbit model for pressure-overloaded heart failure and preliminary exploration of mechanism. Ann Thorac Surg. 2021;112(5):1537–1545. doi: 10.1016/j.athoracsur.2020.07.078.
  • Menon A, Abd-Aziz N, Khalid K, et al. miRNA: a promising therapeutic target in cancer. Int J Mol Sci. 2022;23(19):11502. doi: 10.3390/ijms231911502.
  • Dong F, Khalil M, Kiedrowski M, et al. Critical role for leukocyte hypoxia inducible factor-1alpha expression in post-myocardial infarction left ventricular remodeling. Circ Res. 2010;106(3):601–610. doi: 10.1161/CIRCRESAHA.109.208967.
  • Dodd MS, Sousa Fialho MDL, Montes Aparicio CN, et al. Fatty acids prevent hypoxia-inducible factor-1alpha signaling through decreased succinate in diabetes. JACC Basic Transl Sci. 2018;3(4):485–498. doi: 10.1016/j.jacbts.2018.04.005.
  • Bian P, Ye C, Zheng X, et al. Mesenchymal stem cells alleviate Japanese encephalitis virus-induced neuroinflammation and mortality. Stem Cell Res Ther. 2017;8(1):38. doi: 10.1186/s13287-017-0486-5.
  • Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8(22):6163–6177. doi: 10.7150/thno.28021.
  • Xiong W, Bai X, Xiao H, et al. [Effects of astragaloside IV on exosome secretion and its microRNA-126 expression in human endothelial progenitor cells]. Zhonghua Shao Shang Za Zhi. 2020;36:1183–1190.
  • Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif Cells Nanomed Biotechnol. 2018;46(8):1659–1670. doi: 10.1080/21691401.2017.1388249.
  • Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ Res. 2018;123(5):564–578. doi: 10.1161/CIRCRESAHA.118.312758.
  • Xia JB, Wu HY, Lai BL, et al. Gene delivery of hypoxia-inducible VEGF targeting collagen effectively improves cardiac function after myocardial infarction. Sci Rep. 2017;7(1):13273. doi: 10.1038/s41598-017-13547-1.
  • Qu X, Du Y, Shu Y, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep. 2017;7(1):42657. doi: 10.1038/srep42657.
  • Wang Y, Zhu P, Wang J, et al. Long noncoding RNA lncHand2 promotes liver repopulation via c-Met signaling. J Hepatol. 2018;69(4):861–872. doi: 10.1016/j.jhep.2018.03.029.
  • Cai L, Qi B, Wu X, et al. Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J Mol Cell Cardiol. 2019;130:10–22. doi: 10.1016/j.yjmcc.2019.03.007.
  • Lionetti V, Cantoni S, Cavallini C, et al. Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem. 2010;285(13):9949–9961. doi: 10.1074/jbc.M109.087254.
  • Zhou X, Zhang W, Jin M, et al. lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis. 2017;8(7):e2929. doi: 10.1038/cddis.2017.321.
  • Cao X, Ma Q, Wang B, et al. Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY). 2021;13(8):11188–11206. doi: 10.18632/aging.202785.
  • Zhang F, Wang K, Gao F, et al. Resveratrol pretreatment improved heart recovery ability of hyperglycemic bone marrow stem cells transplantation in diabetic myocardial infarction by down-regulating MicroRNA-34a. Front Pharmacol. 2021;12:632375. doi: 10.3389/fphar.2021.632375.
  • Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int. 2018;2018:3290372. doi: 10.1155/2018/3290372.
  • Tang MKS, Yue PYK, Ip PP, et al. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun. 2018;9(1):2270. doi: 10.1038/s41467-018-04695-7.
  • Lu L, Liu M, Sun R, et al. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys. 2015;72(3):865–867. doi: 10.1007/s12013-015-0553-4.
  • Shafei AE, Ali MA, Ghanem HG, et al. Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017;19(12):e2995. doi: 10.1002/jgm.2995.
  • Peng Y, Zhao JL, Peng ZY, et al. Correction: exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis. 2020;11(10):845. doi: 10.1038/s41419-020-03025-4.
  • Zhu D, Liu S, Huang K, et al. Intrapericardial exosome therapy dampens cardiac injury via activating Foxo3. Circ Res. 2022;131:e135–e150.
  • Liu X, Li X, Zhu W, et al. Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair. J Cell Physiol. 2020;235(11):8010–8022. doi: 10.1002/jcp.29456.
  • Yin B, Hou XW, Lu ML. Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol Sin. 2019;40(5):599–607. doi: 10.1038/s41401-018-0082-y.
  • Yang L, Liu N, Zhao W, et al. Angiogenic function of astragaloside IV in rats with myocardial infarction occurs via the PKD1-HDAC5-VEGF pathway. Exp Ther Med. 2019;17(4):2511–2518. doi: 10.3892/etm.2019.7273.
  • Sun C, Zeng G, Wang T, et al. Astragaloside IV ameliorates myocardial infarction induced apoptosis and restores cardiac function. Front Cell Dev Biol. 2021;9:671255. doi: 10.3389/fcell.2021.671255.
  • Liang C, Ni GX, Shi XL, et al. Astragaloside IV regulates the HIF/VEGF/notch signaling pathway through miRNA-210 to promote angiogenesis after ischemic stroke. Restor Neurol Neurosci. 2020;38(3):271–282. doi: 10.3233/RNN-201001.
  • Wen Z, Mai Z, Zhu X, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):36. doi: 10.1186/s13287-020-1563-8.
  • Van Der Kwast R, Woudenberg T, Quax PHA, et al. MicroRNA-411 and its 5′-IsomiR have distinct targets and functions and are differentially regulated in the vasculature under ischemia. Mol Ther. 2020;28(1):157–170. doi: 10.1016/j.ymthe.2019.10.002.
  • Ai P, Shen B, Pan H, et al. MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1alpha. J Thromb Thrombolysis. 2018;45(2):264–273. doi: 10.1007/s11239-017-1596-8.
  • Yang F, Huang R, Ma H, et al. miRNA-411 regulates chondrocyte autophagy in osteoarthritis by targeting hypoxia-inducible factor 1 alpha (HIF-1alpha). Med Sci Monit. 2020;26:e921155. doi: 10.12659/MSM.921155.
  • Bonham CA, Kuehlmann B, Gurtner GC. Impaired neovascularization in aging. Adv Wound Care (New Rochelle). 2020;9(3):111–126. doi: 10.1089/wound.2018.0912.
  • Li S, Li S. Effects of transplantation of hypoxia-inducible factor-1alpha genemodified cardiac stem cells on cardiac function of heart failure rats after myocardial infarction. Anatol J Cardiol. 2018;20(6):318–329. doi: 10.14744/AnatolJCardiol.2018.91979.
  • Gonzalez-King H, Garcia NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1alpha potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells. 2017;35(7):1747–1759. doi: 10.1002/stem.2618.
  • Huang B, Qian J, Ma J, et al. Myocardial transfection of hypoxia-inducible factor-1alpha and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res Ther. 2014;5(1):22. doi: 10.1186/scrt410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.