371
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Remote loading in liposome: a review of current strategies and recent developments

, , , , , , & ORCID Icon show all
Received 16 Nov 2023, Accepted 01 Feb 2024, Published online: 11 Feb 2024

References

  • Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. Nanoscale Adv. 2022;4(3):634–653. doi:10.1039/d1na00810b.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. doi:10.1002/btm2.10143.
  • Barenholz Y. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–134. doi:10.1016/j.jconrel.2012.03.020.
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–252. doi:10.1016/s0022-2836(65)80093-6.
  • Cheung BC, Sun TH, Leenhouts JM, et al. Loading of doxorubicin into liposomes by forming Mn2+-drug complexes. Biochim Biophys Acta. 1998;1414(1-2):205–216. doi:10.1016/s0005-2736(98)00168-0.
  • Deamer DW, Prince RC, Crofts AR. The response of fluorescent amines to pH gradients across liposome membranes. Biochim Biophys Acta. 1972;274(2):323–335. doi:10.1016/0005-2736(72)90180-0.
  • Gregoriadis G, Leathwood PD, Ryman BE. Enzyme entrapment in liposomes. FEBS Lett. 1971;14(2):95–99. doi:10.1016/0014-5793(71)80109-6.
  • Gubernator J, Chwastek G, Korycińska M, et al. The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. J Control Release. 2010;146(1):68–75. doi:10.1016/j.jconrel.2010.05.021.
  • Haran G, Cohen R, Bar LK, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151(2):201–215. doi:10.1016/0005-2736(93)90105-9.
  • Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta. 1986;857(1):123–126. doi:10.1016/0005-2736(86)90105-7.
  • Nichols JW, Deamer DW. Catecholamine uptake and concentration by liposomes maintaining p/ gradients. Biochim Biophys Acta. 1976;455(1):269–271. doi:10.1016/0005-2736(76)90169-3.
  • Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973;36(3):292–296. doi:10.1016/0014-5793(73)80394-1.
  • Gabizon A, Goren D, Fuks Z, et al. Enhancement of adriamycin delivery to liver metastatic cells with increased tumoricidal effect using liposomes as drug carriers. Cancer Res. 1983;43(10):4730–4735.
  • Gabizon A, Goren D, Fuks Z, et al. Superior therapeutic activity of liposome-associated adriamycin in a murine metastatic tumour model. Br J Cancer. 1985;51(5):681–689. doi:10.1038/bjc.1985.103.
  • Sudheesh MS, Jain V, Shilakari G, et al. Development and characterization of lectin-functionalized vesicular constructs bearing amphotericin B for bio-film targeting. J Drug Target. 2009;17(2):148–158. doi:10.1080/10611860802546629.
  • Pauli G, Tang W-L, Li S-D. Development and characterization of the solvent-assisted active loading technology (SALT) for liposomal loading of poorly water-soluble compounds. Pharmaceutics. 2019;11(9):465. doi:10.3390/pharmaceutics11090465.
  • Mayer LD, Tai LC, Bally MB, et al. Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta. 1990;1025(2):143–151. doi:10.1016/0005-2736(90)90091-2.
  • Tardi PG, Boman NL, Cullis PR. Liposomal doxorubicin. J Drug Target. 1996;4(3):129–140. doi:10.3109/10611869609015970.
  • Mayer LD, Tai LC, Ko DS, et al. Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res. 1989;49(21):5922–5930.
  • Sur S, Fries AC, Kinzler KW, et al. Remote loading of preencapsulated drugs into stealth liposomes. Proc Natl Acad Sci U S A. 2014;111(6):2283–2288. doi:10.1073/pnas.1324135111.
  • Barenholz Y. Relevancy of drug loading to liposomal formulation therapeutic efficacy. J Liposome Res. 2003;13(1):1–8. doi:10.1081/lpr-120017482.
  • Bolotin EM, Cohen R, Bar LK, et al. Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res. 1994;4(1):455–479. doi:10.3109/08982109409037057.
  • Zucker D, Marcus D, Barenholz Y, et al. Liposome drugs’ loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J Control Release. 2009;139(1):73–80. doi:10.1016/j.jconrel.2009.05.036.
  • Li T, Cipolla D, Rades T, et al. Drug nanocrystallisation within liposomes. J Control Release. 2018;288:96–110. doi:10.1016/j.jconrel.2018.09.001.
  • Forssen EA. The design and development of DaunoXome® for solid tumor targeting in vivo. Adv Drug Delivery Rev. 1997;24(2-3):133–150. doi:10.1016/S0169-409X(96)00453-X.
  • Drummond DC, Noble CO, Guo Z, et al. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 2006;66(6):3271–3277. doi:10.1158/0008-5472.CAN-05-4007.
  • Fenske DB, Wong KF, Maurer E, et al. Ionophore-mediated uptake of ciprofloxacin and vincristine into large unilamellar vesicles exhibiting transmembrane ion gradients. Biochim Biophys Acta. 1998;1414(1-2):188–204. doi:10.1016/s0005-2736(98)00166-7.
  • Johnston MJW, Semple SC, Klimuk SK, et al. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim Biophys Acta. 2006;1758(1):55–64. doi:10.1016/j.bbamem.2006.01.009.
  • Tardi P, Johnstone S, Harasym N, et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res. 2009;33(1):129–139. doi:10.1016/j.leukres.2008.06.028.
  • Dicko A, Kwak S, Frazier AA, et al. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int J Pharm. 2010a;391(1-2):248–259. doi:10.1016/j.ijpharm.2010.02.014.
  • Kim HP, Gerhard B, Harasym TO, et al. Liposomal encapsulation of a synergistic molar ratio of cytarabine and daunorubicin enhances selective toxicity for acute myeloid leukemia progenitors as compared to analogous normal hematopoietic cells. Exp Hematol. 2011;39(7):741–750. doi:10.1016/j.exphem.2011.04.001.
  • Madden TD, Harrigan PR, Tai LC, et al. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990;53(1):37–46. doi:10.1016/0009-3084(90)90131-a.
  • Swenson CE, Perkins WR, Roberts P, et al. Liposome technology and the development of MyocetTM (liposomal doxorubicin citrate). The Breast. 2001;10:1–7. doi:10.1016/S0960-9776(01)80001-1.
  • Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016a;8(1):6. doi:10.3390/pharmaceutics8010006.
  • Cipolla D, Wu H, Eastman S, et al. Tuning ciprofloxacin release profiles from liposomally encapsulated nanocrystalline drug. Pharm Res. 2016b;33(11):2748–2762. doi:10.1007/s11095-016-2002-5.
  • Dou Y, Hynynen K, Allen C. To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J Control Release. 2017;249:63–73. doi:10.1016/j.jconrel.2017.01.025.
  • Regenold M, Bannigan P, Evans JC, et al. Turning down the heat: the case for mild hyperthermia and thermosensitive liposomes. Nanomedicine. 2022;40:102484. doi:10.1016/j.nano.2021.102484.
  • Semple SC, Leone R, Wang J, et al. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci. 2005;94(5):1024–1038. doi:10.1002/jps.20332.
  • Zhigaltsev IV, Maurer N, Akhong Q-F, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release. 2005;104(1):103–111. doi:10.1016/j.jconrel.2005.01.010.
  • Abraham SA, Edwards K, Karlsson G, et al. An evaluation of transmembrane ion gradient-mediated encapsulation of topotecan within liposomes. J Control Release. 2004;96(3):449–461. doi:10.1016/j.jconrel.2004.02.017.
  • Tardi PG, Gallagher RC, Johnstone S, et al. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim Biophys Acta. 2007;1768(3):678–687. doi:10.1016/j.bbamem.2006.11.014.
  • Dicko A, Frazier AA, Liboiron BD, et al. Intra and inter-molecular interactions dictate the aggregation state of irinotecan co-encapsulated with floxuridine inside liposomes. Pharm Res. 2008;25(7):1702–1713. doi:10.1007/s11095-008-9561-z.
  • Clerc S, Barenholz Y. Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta. 1995;1240(2):257–265. doi:10.1016/0005-2736(95)00214-6.
  • Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011;8(5):565–580. doi:10.1517/17425247.2011.566552.
  • Song Y, Huang Z, Song Y, et al. The application of EDTA in drug delivery systems: doxorubicin liposomes loaded via NH4EDTA gradient. Int J Nanomedicine. 2014;9:3611–3621. doi:10.2147/IJN.S64602.
  • Yang Y, Ma Y, Wang S. A novel method to load topotecan into liposomes driven by a transmembrane NH4EDTA gradient. Eur J Pharm Biopharm. 2012;80(2):332–339. doi:10.1016/j.ejpb.2011.10.013.
  • Lasic DD, Frederik PM, Stuart MC, et al. Gelation of liposome interior. A novel method for drug encapsulation. FEBS Lett. 1992;312(2-3):255–258. doi:10.1016/0014-5793(92)80947-f.
  • Kirpotin DB, Hayes ME, Noble CO, et al. Drug stability and minimized acid-/drug-catalyzed phospholipid degradation in liposomal irinotecan. J Pharm Sci. 2023;112(2):416–434. doi:10.1016/j.xphs.2022.11.025.
  • Yang W, Yang Z, Fu J, et al. The influence of trapping agents on the antitumor efficacy of irinotecan liposomes: head-to-head comparison of ammonium sulfate, sulfobutylether-β-cyclodextrin and sucrose octasulfate. Biomater Sci. 2018;7(1):419–428. doi:10.1039/c8bm01175c.
  • Wang Z, Li J, Lin G, et al. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release. 2022;348:1066–1088. doi:10.1016/j.jconrel.2022.06.012.
  • Dicko A, Tardi P, Xie X, et al. Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int J Pharm. 2007;337(1-2):219–228. doi:10.1016/j.ijpharm.2007.01.004.
  • Mayer LD, Harasym TO, Tardi PG, et al. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol Cancer Ther. 2006;5(7):1854–1863. doi:10.1158/1535-7163.MCT-06-0118.
  • Li X, Hirsh DJ, Cabral-Lilly D, et al. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta. 1998;1415(1):23–40. doi:10.1016/s0005-2736(98)00175-8.
  • Chiu GNC, Abraham SA, Ickenstein LM, et al. Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release. 2005;104(2):271–288. doi:10.1016/j.jconrel.2005.02.009.
  • Gaillard PJ, Appeldoorn CCM, Dorland R, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PloS One. 2014;9(1):e82331. doi:10.1371/journal.pone.0082331.
  • Fritze A, Hens F, Kimpfler A, et al. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006;1758(10):1633–1640. doi:10.1016/j.bbamem.2006.05.028.
  • Yang MM, Wilson WR, Wu Z. pH-Sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: Pathways of internalization, cellular trafficking and cytotoxicity to cancer cells. Int J Pharm. 2017;516(1-2):323–333. doi:10.1016/j.ijpharm.2016.11.041.
  • Gubernator J, Lipka D, Korycińska M, et al. Efficient human breast cancer xenograft regression after a single treatment with a novel liposomal formulation of epirubicin prepared using the EDTA ion gradient method. PloS One. 2014;9(3):e91487. doi:10.1371/journal.pone.0091487.
  • Zhigaltsev IV, Maurer N, Edwards K, et al. Formation of drug-arylsulfonate complexes inside liposomes: a novel approach to improve drug retention. J Control Release. 2006;110(2):378–386. doi:10.1016/j.jconrel.2005.10.011.
  • Johnston MJW, Edwards K, Karlsson G, et al. Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations. J Liposome Res. 2008;18(2):145–157. doi:10.1080/08982100802129372.
  • Abraham SA, Edwards K, Karlsson G, et al. Formation of transition metal–doxorubicin complexes inside liposomes. Biochim Biophys Acta. 2002;1565(1):41–54. doi:10.1016/s0005-2736(02)00507-2.
  • Taggar AS, Alnajim J, Anantha M, et al. Copper-topotecan complexation mediates drug accumulation into liposomes. J Control Release. 2006;114(1):78–88. doi:10.1016/j.jconrel.2006.05.019.
  • Tagami T, May JP, Ernsting MJ, et al. A thermosensitive liposome prepared with a Cu2+ gradient demonstrates improved pharmacokinetics, drug delivery and antitumor efficacy. J Control Release. 2012;161(1):142–149. doi:10.1016/j.jconrel.2012.03.023.
  • Cui JXia, Li CLei, Wang L, et al. Ni2+-mediated mitoxantrone encapsulation: improved efficacy of fast release formulation. Int J Pharm. 2009;368(1-2):24–30. doi:10.1016/j.ijpharm.2008.09.045.
  • Li C, Cui J, Li Y, et al. Copper ion-mediated liposomal encapsulation of mitoxantrone: the role of anions in drug loading, retention and release. Eur J Pharm Sci. 2008;34(4-5):333–344. doi:10.1016/j.ejps.2008.05.006.
  • Patankar NA, Waterhouse D, Strutt D, et al. Topophore C: a liposomal nanoparticle formulation of topotecan for treatment of ovarian cancer. Invest New Drugs. 2013;31(1):46–58. doi:10.1007/s10637-012-9832-8.
  • Ramsay E, Alnajim J, Anantha M, et al. Transition metal-mediated liposomal encapsulation of irinotecan (CPT-11) stabilizes the drug in the therapeutically active lactone conformation. Pharm Res. 2006;23(12):2799–2808. doi:10.1007/s11095-006-9111-5.
  • Ramsay E, Alnajim J, Anantha M, et al. A novel liposomal irinotecan formulation with significant anti-tumour activity: use of the divalent cation ionophore A23187 and copper-containing liposomes to improve drug retention. Eur J Pharm Biopharm. 2008;68(3):607–617. doi:10.1016/j.ejpb.2007.08.011.
  • Cern A, Marcus D, Tropsha A, et al. New drug candidates for liposomal delivery identified by computer modeling of liposomes’ remote loading and leakage. J Control Release. 2017;252:18–27. doi:10.1016/j.jconrel.2017.02.015.
  • Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6(1):66–77. doi:10.1016/S1359-0294(00)00090-X.
  • Xu H, Paxton J, Lim J, et al. Development of high-content gemcitabine PEGylated liposomes and their cytotoxicity on drug-resistant pancreatic tumour cells. Pharm Res. 2014;31(10):2583–2592. doi:10.1007/s11095-014-1353-z.
  • Modi S, Xiang T-X, Anderson BD. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. J Control Release. 2012;162(2):330–339. doi:10.1016/j.jconrel.2012.07.001.
  • Balouch M, Storchmannová K, Štěpánek F, et al. Computational prodrug design methodology for liposome formulability enhancement of small-molecule APIs. Mol Pharm. 2023;20(4):2119–2127. doi:10.1021/acs.molpharmaceut.2c01078.
  • Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Discov Devel. 2010;13(1):111–123.
  • Lasic DD, Ceh B, Stuart MC, et al. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim Biophys Acta. 1995;1239(2):145–156. doi:10.1016/0005-2736(95)00159-z.
  • Li X, Cabral-Lilly D, Janoff AS, et al. Complexation of internalized doxorubicin into fiber bundles affects its release rate from liposomes. J Liposome Res. 2000;10(1):15–27. doi:10.3109/08982100009031092.
  • Maurer N, Wong KF, Hope MJ, et al. Anomalous solubility behavior of the antibiotic ciprofloxacin encapsulated in liposomes: a 1H-NMR study. Biochim Biophys Acta. 1998;1374(1-2):9–20. doi:10.1016/s0005-2736(98)00125-4.
  • Zhang W, Falconer JR, Baguley BC, et al. Improving drug retention in liposomes by aging with the aid of glucose. Int J Pharm. 2016;505(1-2):194–203. doi:10.1016/j.ijpharm.2016.03.044.
  • Dos Santos N, Mayer LD, Abraham SA, et al. Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. Biochim Biophys Acta. 2002;1561(2):188–201. doi:10.1016/s0005-2736(02)00345-0.
  • Liu S, O'Brien DF. Stable polymeric nanoballoons: lyophilization and rehydration of cross-linked liposomes. J Am Chem Soc. 2002;124(21):6037–6042. doi:10.1021/ja0123507.
  • Ishida T, Okada Y, Kobayashi T, et al. Development of pH-sensitive liposomes that efficiently retain encapsulated doxorubicin (DXR) in blood. Int J Pharm. 2006;309(1-2):94–100. doi:10.1016/j.ijpharm.2005.11.010.
  • Russell LM, Hultz M, Searson PC. Leakage kinetics of the liposomal chemotherapeutic agent doxil: the role of dissolution, protonation, and passive transport, and implications for mechanism of action. J Control Release. 2018;269:171–176. doi:10.1016/j.jconrel.2017.11.007.
  • Ipsen JH, Karlström G, Mouritsen OG, et al. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987;905(1):162–172. doi:10.1016/0005-2736(87)90020-4.
  • Cern A, Golbraikh A, Sedykh A, et al. Quantitative structure-property relationship modeling of remote liposome loading of drugs. J Control Release. 2012;160(2):147–157. doi:10.1016/j.jconrel.2011.11.029.
  • Cern A, Barenholz Y, Tropsha A, et al. Computer-aided design of liposomal drugs: in silico prediction and experimental validation of drug candidates for liposomal remote loading. J Control Release. 2014;173:125–131. doi:10.1016/j.jconrel.2013.10.029.
  • Sofias AM, Lammers T. Multidrug nanomedicine. Nat Nanotechnol. 2023;18(2):104–106. doi:10.1038/s41565-022-01265-3.
  • Dicko AWA, Mayer LD, Tardi PG. Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin Drug Deliv. 2010;7(12):1329–1341. 10.1517/17425247.2010.53867821118030
  • Detappe A, Nguyen HV-T, Jiang Y, et al. Molecular bottlebrush prodrugs as Mono- and triplex combination therapies for multiple myeloma. Nat Nanotechnol. 2023;18(2):184–192. doi:10.1038/s41565-022-01310-1.
  • Batist G, Gelmon KA, Chi KN, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res. 2009;15(2):692–700. doi:10.1158/1078-0432.CCR-08-0515.
  • Hu Q, Sun W, Wang C, et al. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34. doi:10.1016/j.addr.2015.10.022.
  • Mignani S, Bryszewska M, Klajnert-Maculewicz B, et al. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules. 2015;16(1):1–27. doi:10.1021/bm501285t.
  • Shim G, Kim M-G, Kim D, et al. Nanoformulation-based sequential combination cancer therapy. Adv Drug Deliv Rev. 2017;115:57–81. doi:10.1016/j.addr.2017.04.003.
  • Zhang RX, Wong HL, Xue HY, et al. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release. 2016;240:489–503. doi:10.1016/j.jconrel.2016.06.012.
  • Boinapalli Y, Shankar Pandey R, Singh Chauhan A, et al. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm. 2023;632:122579. doi:10.1016/j.ijpharm.2022.122579.
  • Jain P, Pawar RS, Pandey RS, et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: is protein corona the missing link? Biotechnol Adv. 2017;35(7):889–904. doi:10.1016/j.biotechadv.2017.08.003.
  • Duarte D, Vale N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr Res Pharmacol Drug Discov. 2022;3:100110. doi:10.1016/j.crphar.2022.100110.
  • Mayer LD, Janoff AS. Optimizing combination chemotherapy by controlling drug ratios. Mol Interv. 2007;7(4):216–223. doi:10.1124/mi.7.4.8.
  • Dos Santos N, Waterhouse D, Masin D, et al. Substantial increases in idarubicin plasma concentration by liposome encapsulation mediates improved antitumor activity. J Control Release. 2005;105(1-2):89–105. doi:10.1016/j.jconrel.2005.03.007.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48. doi:10.1016/j.addr.2012.09.037.
  • Petersen GH, Alzghari SK, Chee W, et al. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release. 2016;232:255–264. doi:10.1016/j.jconrel.2016.04.028.
  • Berry G, Billingham M, Alderman E, et al. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol. 1998;9(7):711–716. doi:10.1023/a:1008216430806.
  • Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000;11(8):1029–1033. doi:10.1023/a:1008365716693.
  • Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–2692. doi:10.1200/JCO.2017.77.6112.
  • Liu B, Zhang J, Liu Z, et al. Research on the preparation process of the cytarabine/daunorubicin dual-encapsulation liposome and its physicochemical properties and performances in vitro/vivo. Int J Pharm. 2023;646:123500. doi:10.1016/j.ijpharm.2023.123500.
  • Cipolla D, Wu H, Gonda I, et al. Aerosol performance and long-term stability of surfactant-associated liposomal ciprofloxacin formulations with modified encapsulation and release properties. AAPS PharmSciTech. 2014;15(5):1218–1227. doi:10.1208/s12249-014-0155-2.
  • Wehbe M, Chernov L, Chen K, et al. PRCosomes: pretty reactive complexes formed in liposomes. J Drug Target. 2016;24(9):787–796. doi:10.1080/1061186X.2016.1186169.
  • Tang W-L, Chen WC, Roy A, et al. A simple and improved active loading method to efficiently encapsulate staurosporine into lipid-based nanoparticles for enhanced therapy of multidrug resistant cancer. Pharm Res. 2016;33(5):1104–1114. doi:10.1007/s11095-015-1854-4.
  • Tang W-L, Tang W-H, Chen WC, et al. Development of a rapidly dissolvable oral pediatric formulation for mefloquine using liposomes. Mol Pharm. 2017;14(6):1969–1979. doi:10.1021/acs.molpharmaceut.7b00077.
  • Tang W-L, Tang W-H, Szeitz A, et al. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials. 2018;166:13–26. doi:10.1016/j.biomaterials.2018.03.004.
  • Kirsch SA, Böckmann RA. Membrane pore formation in atomistic and coarse-grained simulations. Biochim Biophys Acta. 2016;1858(10):2266–2277. doi:10.1016/j.bbamem.2015.12.031.
  • Galvao J, Davis B, Tilley M, et al. Unexpected low-dose toxicity of the universal solvent DMSO. Faseb J. 2014;28(3):1317–1330. doi:10.1096/fj.13-235440.
  • Verheijen M, Lienhard M, Schrooders Y, et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep. 2019;9(1):4641. doi:10.1038/s41598-019-40660-0.
  • May JP, Undzys E, Roy A, et al. Synthesis of a gemcitabine prodrug for remote loading into liposomes and improved therapeutic effect. Bioconjug Chem. 2016;27(1):226–237. doi:10.1021/acs.bioconjchem.5b00619.
  • Zhigaltsev IV, Winters G, Srinivasulu M, et al. Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. J Control Release. 2010;144(3):332–340. doi:10.1016/j.jconrel.2010.02.029.
  • Zhou S, Li J, Yu J, et al. A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect. Acta Pharm Sin B. 2021;11(1):258–270. doi:10.1016/j.apsb.2020.08.001.
  • Zhang W, Wang G, Falconer JR, et al. Strategies to maximize liposomal drug loading for a poorly water-soluble anticancer drug. Pharm Res. 2015;32(4):1451–1461. doi:10.1007/s11095-014-1551-8.
  • Yang MM, Yarragudi SB, Jamieson SMF, et al. Calcium enabled remote loading of a weak acid into ph-sensitive liposomes and augmented cytosolic delivery to cancer cells via the proton sponge effect. Pharm Res. 2022;39(6):1181–1195. doi:10.1007/s11095-022-03206-0.
  • Hood RR, Vreeland WN, DeVoe DL. Microfluidic remote loading for rapid single-step liposomal drug preparation. Lab Chip. 2014;14(17):3359–3367. doi:10.1039/c4lc00390j.
  • Zheng Y, Xie L, Tie X, et al. Remote drug loading into liposomes via click reaction. Mater Horiz. 2022;9(7):1969–1977. doi:10.1039/d2mh00380e.
  • Cipolla D, Wu H, Salentinig S, et al. Formation of drug nanocrystals under nanoconfinement afforded by liposomes. RSC Adv. 2016c;6(8):6223–6233. doi:10.1039/C5RA25898G.
  • Wei X, Shamrakov D, Nudelman S, et al. Cardinal role of intraliposome doxorubicin-sulfate nanorod crystal in doxil properties and performance. ACS Omega. 2018;3(3):2508–2517. doi:10.1021/acsomega.7b01235.
  • Farooqui RK, Kaurav M, Kumar M, et al. Permeation enhancer nanovesicles mediated topical delivery of curcumin for the treatment of hyperpigmentation. J Liposome Res. 2022;32(4):332–339. doi:10.1080/08982104.2021.2024567.
  • Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res. 2023;33(4):410–424. doi:10.1080/08982104.2023.2199068.
  • Kapoor M, Lee SL, Tyner KM. Liposomal drug product development and quality: Current US experience and perspective. Aaps J. 2017;19(3):632–641. doi:10.1208/s12248-017-0049-9.
  • Boulikas T. Clinical overview on lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs. 2009;18(8):1197–1218. doi:10.1517/13543780903114168.
  • Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Deliv. 2012;2012:581363–10. doi:10.1155/2012/581363.
  • Barenholz Y, Amselem S, Goren D, et al. Stability of liposomal doxorubicin formulations: problems and prospects. Med Res Rev. 1993;13(4):449–491. doi:10.1002/med.2610130404.
  • Grit M, Crommelin DJ. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipids. 1993;64(1-3):3–18. doi:10.1016/0009-3084(93)90053-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.