64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis, and in vitro gene transfer efficacy of novel ionizable cholesterol derivatives

, , , , , & show all
Received 25 Dec 2023, Accepted 18 Mar 2024, Published online: 02 Apr 2024

References

  • Mendonça MCP, Kont A, Kowalski PS, et al. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids. Drug Discov Today. 2023;28(3):103505. doi: 10.1016/j.drudis.2023.103505.
  • Maclachlan E. 2011. Lipid formulation for nucleic acid delivery. United States: Protiva Biotherapeutics, Inc., Burnaby, B.C. (CA).
  • Draghici B, Ilies MA. Synthetic nucleic acid delivery systems: present and perspectives. J Med Chem. 2015;58(10):4091–4130. doi: 10.1021/jm500330k.
  • Sato Y, Hashiba K, Sasaki K, et al. Understanding structure–activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J Control Release. 2019;295:140–152. doi: 10.1016/j.jconrel.2019.01.001.
  • Dan N, Danino D. Structure and kinetics of lipid–nucleic acid complexes. Adv Colloid Interface Sci. 2014;205:230–239. doi: 10.1016/j.cis.2014.01.013.
  • Lee SM, Cheng Q, Yu X, et al. A systematic study of unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo. Angew Chem Int Ed Engl. 2021;60(11):5848–5853. doi: 10.1002/anie.202013927.
  • Hald Albertsen C, Kulkarni JA, Witzigmann D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. doi: 10.1016/j.addr.2022.114416.
  • Dabkowska AP, Barlow DJ, Campbell RA, et al. Effect of helper lipids on the interaction of DNA with cationic lipid monolayers studied by specular neutron reflection. Biomacromolecules. 2012;13(8):2391–2401. doi: 10.1021/bm300639n.
  • Hattori Y, Saito H, Oku T, et al. Effects of sterol derivatives in cationic liposomes on biodistribution and gene-knockdown in the lungs of mice systemically injected with siRNA lipoplexes. Mol Med Rep. 2021;24(2). doi: 10.3892/mmr.2021.12237.
  • Yang SY, Zheng Y, Chen JY, et al. Comprehensive study of cationic liposomes composed of DC-Chol and cholesterol with different mole ratios for gene transfection. Colloids Surf B Biointerfaces. 2013;101:6–13. doi: 10.1016/j.colsurfb.2012.05.032.
  • Bohinc K, Špadina M, Reščič J, et al. Influence of charge lipid head group structures on electric double layer properties. J Chem Theory Comput. 2022;18(1):448–460. doi: 10.1021/acs.jctc.1c00800.
  • Zhi D, Zhang S, Cui S, et al. The headgroup evolution of cationic lipids for gene delivery. Bioconjug Chem. 2013;24(4):487–519. doi: 10.1021/bc300381s.
  • Bajaj A, Mishra SK, Kondaiah P, et al. Effect of the headgroup variation on the gene transfer properties of cholesterol based cationic lipids possessing ether linkage. Biochim Biophys Acta. 2008;1778(5):1222–1236. doi: 10.1016/j.bbamem.2007.12.010.
  • Ju J, Huan ML, Wan N, et al. Novel cholesterol-based cationic lipids as transfecting agents of DNA for efficient gene delivery. Int J Mol Sci. 2015;16(3):5666–5681. doi: 10.3390/ijms16035666.
  • Sheng R, Luo T, Li H, et al. Cholesterol-based cationic lipids for gene delivery: contribution of molecular structure factors to physico-chemical and biological properties. Colloids Surf B Biointerfaces. 2014;116:32–40. doi: 10.1016/j.colsurfb.2013.12.039.
  • Song H, Wang G, He B, et al. Cationic lipid-coated PEI/DNA polyplexes with improved efficiency and reduced cytotoxicity for gene delivery into mesenchymal stem cells. Int J Nanomedicine. 2012;7:4637–4648. doi: 10.2147/IJN.S33923.
  • Radchatawedchakoon W, Watanapokasin R, Krajarng A, et al. Solid phase synthesis of novel asymmetric hydrophilic head cholesterol-based cationic lipids with potential DNA delivery. Bioorg Med Chem. 2010;18(1):330–342. doi: 10.1016/j.bmc.2009.10.057.
  • Radchatawedchakoon W, Thongbamrer C, Konbamrung W, et al. The effect of polar headgroups and spacer length on the DNA transfection of cholesterol-based cationic lipids. RSC Med Chem. 2020;11(2):212–224. doi: 10.1039/c9md00459a.
  • Pape WJ, Pfannenbecker U, Hoppe U. Validation of the red blood cell test system as in vitro assay for the rapid screening of irritation potential of surfactants. Mol Toxicol. 1987;1:525–536.
  • Monpara J, Velga D, Verma T, et al. Cationic cholesterol derivative efficiently delivers the genes: in silico and in vitro studies. Drug Deliv Transl Res. 2019;9(1):106–122. doi: 10.1007/s13346-018-0571-z.
  • Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 2012;51(34):8529–8533. doi: 10.1002/anie.201203263.
  • Smith SA, Selby LI, Johnston APR, et al. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug Chem. 2019;30(2):263–272. doi: 10.1021/acs.bioconjchem.8b00732.
  • Cui S, Wang Y, Gong Y, et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb). 2018;7(3):473–479. doi: 10.1039/c8tx00005k.
  • Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–1094. doi: 10.1038/s41578-021-00358-0.
  • Shayesteh TH, Radmehr M, Khajavi F, et al. Application of chemometrics in determination of the acid dissociation constants (pKa) of several benzodiazepine derivatives as poorly soluble drugs in the presence of ionic surfactants. Eur J Pharm Sci. 2015;69:44–50. doi: 10.1016/j.ejps.2014.12.013.
  • Ramezanpour M, Schmidt ML, Bodnariuc I, et al. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. Nanoscale. 2019;11(30):14141–14146. doi: 10.1039/c9nr02297j.
  • Carrasco MJ, Alishetty S, Alameh M-G, et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun Biol. 2021;4(1):956. doi: 10.1038/s42003-021-02441-2.
  • Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016;99(Pt A):129–137. doi: 10.1016/j.addr.2016.01.022.
  • Kulkarni JA, Witzigmann D, Leung J, et al. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019;11(45):21733–21739. doi: 10.1039/c9nr09347h.
  • Zhang R, El-Mayta R, Murdoch TJ, et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater Sci. 2021;9(4):1449–1463. doi: 10.1039/d0bm01609h.
  • Ozkan P, Mutharasan R. A rapid method for measuring intracellular pH using BCECF-AM. Biochim Biophys Acta. 2002;1572(1):143–148. doi: 10.1016/s0304-4165(02)00303-3.
  • Kermaniyan SS, Chen M, Zhang C, et al. Understanding the biological interactions of pH-swellable nanoparticles. Macromol Biosci. 2022;22(5):e2100445. doi: 10.1002/mabi.202100445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.