55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Neuroprotection effects of kynurenic acid-loaded micelles for the Parkinson’s disease models

, , , , &
Received 31 Jan 2024, Accepted 18 Apr 2024, Published online: 23 May 2024

References

  • Dodson PD, Dreyer JK, Jennings KA, et al. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in Parkinsonism. Proc Natl Acad Sci U S A. 2016;113(15):E2180–8. doi: 10.1073/pnas.1515941113.
  • Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20(5):385–397. doi: 10.1016/S1474-4422(21)00030-2.
  • Costa HN, Esteves AR, Empadinhas N, et al. Parkinson’s disease: a multisystem disorder. Neurosci Bull. 2023;39(1):113–124. doi: 10.1007/s12264-022-00934-6.
  • Charvin D, Medori R, Hauser RA, et al. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov. 2018;17(11):804–822. doi: 10.1038/nrd.2018.136.
  • Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna)). 2014;121(8):849–859. doi: 10.1007/s00702-013-1149-z.
  • Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci. 2020;144(3):151–164. doi: 10.1016/j.jphs.2020.07.011.
  • Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases-What is the evidence? Front Neurosci. 2015;9:469. doi: 10.3389/fnins.2015.00469.
  • Angelova PR, Choi ML, Berezhnov AV, et al. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ. 2020;27(10):2781–2796. doi: 10.1038/s41418-020-0542-z.
  • Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379–387. doi: 10.1038/aps.2009.24.
  • Siesjö BK, Bengtsson F, Grampp W, et al. Calcium, excitotoxins, and neuronal death in the brain. Ann N Y Acad Sci. 1989;568(1):234–251. doi: 10.1111/j.1749-6632.1989.tb12513.x.
  • Watson JB, Hatami A, David H, et al. Alterations in corticostriatal synaptic plasticity in mice overexpressing human α-synuclein. Neuroscience. 2009;159(2):501–513. doi: 10.1016/j.neuroscience.2009.01.021.
  • Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018;109(Pt B):249–257. doi: 10.1016/j.nbd.2017.04.004.
  • Urenjak J, Obrenovitch TP. Neuroprotective potency of kynurenic acid against excitotoxicity. Neuroreport. 2000;11(6):1341–1344. doi: 10.1097/00001756-200004270-00038.
  • Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. Febs J. 2012;279(8):1356–1365. doi: 10.1111/j.1742-4658.2012.08485.x.
  • Stone TW, Forrest CM, Darlington LG. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. Febs J. 2012;279(8):1386–1397. doi: 10.1111/j.1742-4658.2012.08487.x.
  • Ostapiuk A, Urbanska EM. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword? CNS Neurosci Ther. 2022;28(1):19–35. doi: 10.1111/cns.13768.
  • Alexander KS, Pocivavsek A, Wu HQ, et al. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neurosci. 2013;238:19–28. doi: 10.1016/j.neuroscience.2013.01.063.
  • Kocki T, Wielosz M, Turski WA, et al. Enhancement of brain kynurenic acid production by anticonvulsants–novel mechanism of antiepileptic activity? Eur J Pharmacol. 2006;541(3):147–151. doi: 10.1016/j.ejphar.2006.05.015.
  • Miranda AF, Boegman RJ, Beninger RJ, et al. Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neurosci. 1997;78(4):967–975. doi: 10.1016/s0306-4522(96)00655-0.
  • Vandeputte C, Taymans JM, Casteels C, et al. Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci. 2010;11(1):92. doi: 10.1186/1471-2202-11-92.
  • Varga N, Csapó E, Majláth Z, et al. Targeting of the kynurenic acid across the blood-brain barrier by core-shell nanoparticles. Eur J Pharm Sci. 2016;86:67–74. doi: 10.1016/j.ejps.2016.02.012.
  • Lin CY, Li RJ, Huang CY, et al. Controlled release of liposome-encapsulated temozolomide for brain tumour treatment by convection-enhanced delivery. J Drug Target. 2018;26(4):325–332. doi: 10.1080/1061186X.2017.1379526.
  • Bhatt P, Lalani R, Vhora I, et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm. 2018;536(1):95–107. doi: 10.1016/j.ijpharm.2017.11.048.
  • Lin CY, Javadi M, Belnap DM, et al. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine. 2014;10(1):67–76. doi: 10.1016/j.nano.2013.06.011.
  • Lin CJ, Lin CY, Lin YT, et al. Microbubble-facilitated ultrasound pulsation promotes direct α-synuclein gene delivery. Biochem Biophys Res Commun. 2019;517(1):77–83. doi: 10.1016/j.bbrc.2019.07.017.
  • Lin CY, Huang CY, Chen CM, et al. Focused ultrasound-induced blood-brain barrier opening enhanced α-synuclein expression in mice for modeling Parkinson’s disease. Pharmaceutics. 2022;14(2):444. doi: 10.3390/pharmaceutics14020444.
  • Lin CY, Hsieh HY, Chen CM, et al. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. J Control Release. 2016;235:72–81. doi: 10.1016/j.jconrel.2016.05.052.
  • Lin CY, Lin YC, Huang CY, et al. Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: Preclinical investigation for Parkinson’s disease treatment. J Control Release. 2020;321:519–528. doi: 10.1016/j.jconrel.2020.02.044.
  • Ali D, Tripathi A, Al Ali H, et al. ROS-dependent bax/Bcl2 and caspase 3 pathway-mediated apoptosis induced by zineb in human keratinocyte cells. Onco Targets Ther. 2018;11:489–497. doi: 10.2147/OTT.S140358.
  • Singh R, Shankar BS, Sainis KB. TGF-β1-ROS-ATM-CREB signaling axis in macrophage mediated migration of human breast cancer MCF7 cells. Cell Signal. 2014;26(7):1604–1615. doi: 10.1016/j.cellsig.2014.03.028.
  • Oz T, Kaushik A, Kujawska M. Neural stem cells for Parkinson’s disease management: Challenges, nanobased support, and prospects. World J Stem Cells. 2023;15(7):687–700. doi: 10.4252/wjsc.v15.i7.687.
  • Majláth Z, Toldi J, Fülöp F, et al. Excitotoxic mechanisms in Non-Motor dysfunctions and levodopa- induced dyskinesia in Parkinson’s disease: the role of the interaction between the dopaminergic and the kynurenine system. Curr Med Chem. 2016;23(9):874–883. doi: 10.2174/0929867323666160212121915.
  • Lovelace MD, Varney B, Sundaram G, et al. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112(Pt B):373–388. doi: 10.1016/j.neuropharm.2016.03.024.
  • Larkin PB, Sathyasaikumar KV, Notarangelo FM, et al. Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 make separate, tissue-specific contributions to basal and inflammation-induced kynurenine pathway metabolism in mice. Biochim Biophys Acta. 2016;1860(11 Pt A):2345–2354. doi: 10.1016/j.bbagen.2016.07.002.
  • Meier TB, Drevets WC, Wurfel BE, et al. Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun. 2016;53:39–48. doi: 10.1016/j.bbi.2015.11.003.
  • Nozaki K, Beal MF. Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats. J Cereb Blood Flow Metab. 1992;12(3):400–407. doi: 10.1038/jcbfm.1992.57.
  • Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, et al. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol. 2011;33(5):538–547. doi: 10.1016/j.ntt.2011.07.002.
  • Ramos-Chávez LA, Lugo Huitrón R, González Esquivel D, et al. Relevance of alternative routes of kynurenic acid production in the brain. Oxid Med Cell Longev. 2018;2018:5272741–14. doi: 10.1155/2018/5272741.
  • Surapaneni MS, Das SK, Das NG. Designing paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN Pharmacol. 2012;2012:623139–15. doi: 10.5402/2012/623139.
  • Zhang Q, Polyakov NE, Chistyachenko YS, et al. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198–209. doi: 10.1080/10717544.2017.1422298.
  • Hornok V, Amin KWK, Kovács AN, et al. Increased blood-brain barrier permeability of neuroprotective drug by colloidal serum albumin carriers. Colloids Surf B Biointerfaces. 2022;220:112935. doi: 10.1016/j.colsurfb.2022.112935.
  • Juhász Á, Ungor D, Varga N, et al. Lipid-Based nanocarriers for delivery of neuroprotective kynurenic acid: Preparation, characterization, and BBB transport. Int J Mol Sci. 2023;24(18):14251. doi: 10.3390/ijms241814251.
  • Ransom BR, Kunis DM, Irwin I, et al. Astrocytes convert the Parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci Lett. 1987;75(3):323–328. doi: 10.1016/0304-3940(87)90543-x.
  • Chang KH, Cheng ML, Tang HY, et al. Alterations of sphingolipid and phospholipid pathways and ornithine level in the plasma as biomarkers of Parkinson’s disease. Cells. 2022;11(3):395. doi: 10.3390/cells11030395.
  • Chen WR, Chen JC, Chang SY, et al. Phosphorylated α-synuclein in diluted human serum as a biomarker for Parkinson’s disease. Biomed J. 2022;45(6):914–922. doi: 10.1016/j.bj.2021.12.010.
  • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–2047. doi: 10.1126/science.276.5321.2045.
  • Klucken J, Poehler AM, Ebrahimi-Fakhari D, et al. Alpha-synuclein aggregation involves a bafilomycin a 1-sensitive autophagy pathway. Autophagy. 2012;8(5):754–766. doi: 10.4161/auto.19371.
  • Outeiro TF, Putcha P, Tetzlaff JE, et al. Formation of toxic oligomeric alpha-synuclein species in living cells. PloS One. 2008;3(4):e1867. doi: 10.1371/journal.pone.0001867.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.