35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Calcein release from DPPC liposomes by phospholipase A2 activity: Effect of cholesterol and amphipathic copolymers

, , &
Received 02 Aug 2023, Accepted 25 May 2024, Published online: 07 Jun 2024

References

  • Ahmed K, Hussein S, Ali A, et al. Liposome: composition, characterization, preparation, and recent innovation in clinical applications. J Drug Target. 2019a;27(7):742–761.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Delivery Rev. 2013;65(1):36–48. doi: 10.1016/j.addr.2012.09.037.
  • Kumar-Sriraman S, Torchilin VP. 2014. Recent advances with liposomes as drug carriers. In: Tiwari A, Nordin A, editors. Advanced biomaterials and biodevices. John Wiley & Sons, Inc. Scrivener Publishing; 2014. p. 79–119. doi: 10.1002/9781118774052.ch3.
  • Nsairat H, Khater D, Sayed U, et al. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. 13, doi: 10.1016/j.heliyon.2022.e09394.
  • Nunes SS, Fernandes RS, Cavalcante CH, et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Deliv Transl Res. 2019;9(1):123–130. doi: 10.1007/s13346-018-0583-8.
  • Ye H, Zhou L, Jin H, et al. Sorafenib-Loaded Long-Circulating nanoliposomes for liver cancer therapy. Biomed Res Int. 2020;6:1351046.
  • Mohamed M, Abu Lila AS, Shimizu T, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20(1):710–724. doi: 10.1080/14686996.2019.1627174.
  • Petralito S, Spera R, Pacelli S, et al. Design and development of PEG-DMA gel-in-liposomes as a new tool for drug delivery. React Funct Polym. 2014;77:30–38. doi: 10.1016/j.reactfunctpolym.2014.02.002.
  • Susanti TM, Haris D, Rushdan MS, et al. PEGylated liposomes enhance the effect of cytotoxic drug: a review. Heliyon. 2023;9(3):e13823. 17, doi: 10.1016/j.heliyon.2023.e13823.
  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571. doi: 10.1016/j.ijpharm.2021.120571.
  • De Leo V, Milano F, Agostiano A, et al. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polymers (Basel). 2021;13(7):1027. 26, doi: 10.3390/polym13071027.
  • Chatterjee S, Ooya T. Copolymers composed of 2‑(methacryloyloxy)ethyl phosphorylcholine and methacrylated polyhedral oligomeric silsesquioxane as a simple modifier for liposomes. ACS Appl Polym Mater. 2020;2(5):1909–1916. doi: 10.1021/acsapm.0c00129.
  • Chountoulesi M, Selianitis D, Pispas S, et al. Recent advances on PEO-PCL block and graft copolymers as nanocarriers for drug delivery applications. Materials (Basel). 2023;16(6):1–22. 162298, doi: 10.3390/ma16062298.
  • Dash TK, Konkimalla VBJ. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release. 2012;158:15–33.
  • Figarol A, Gibot L, Golzio M, et al. A journey from the endothelium to the tumor tissue: Distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Deliv. 2018;25:1766–1778.
  • Ibrahim M, Abuwatfa WH, Awad NS, et al. Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and Metal-Organic frameworks: a review. Pharmaceutics. 2022;14(2):254. doi: 10.3390/pharmaceutics14020254.
  • Kulkarni B, Qutub S, Ladelta V, et al. AIE-Based fluorescent triblock copolymer micelles for simultaneous drug delivery and intracellular imaging. Biomacromolecules. 2021;22(12):5243–5255. doi: 10.1021/acs.biomac.1c01165.
  • Luo D, Carter KA, Razi A, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials. 2016;75:193–202. doi: 10.1016/j.biomaterials.2015.10.027.
  • Pippa N, Pispas S, Demetzos D. Polymer self-assembled nanostructures as innovative drug nanocarrier platforms. Curr Pharm Des. 2016;22:2788–2795.
  • Kieler-Ferguson HM, Chan D, Sockolosky J, et al. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. Eur J Pharm Sci. 2017;103:85–93. doi: 10.1016/j.ejps.2017.03.003.
  • Kuznetsova D, Gabdrakhmanov D, Gaynanova G, et al. Novel biocompatible liposomal formulations for encapsulation of hydrophilic drugs – chloramphenicol and cisplatin. Colloids Surf, A. 2021;610:125673. doi: 10.1016/j.colsurfa.2020.125673.
  • Somekawa S, Masutani K, Hsu YI, et al. Size-Controlled nanomicelles of poly(lactic acid)–poly(ethylene glycol) copolymers with a multiblock configuration. Polymers. 2015;7(6):1177–1191. doi: 10.3390/polym7061177.
  • Quaglia F, Ostacolo L, Nese G, et al. Micelles based on amphiphilic PCL-PEO triblock and star-shaped diblock copolymers: Potential in drug delivery applications. J Biomed Mater Res. 2008;87A(3):563–574. doi: 10.1002/jbm.a.31804.
  • Lombardo D, Kiselev MA. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022;14(3):543. doi: 10.3390/pharmaceutics14030543.
  • Wu G, Khant HA, Chiu W, et al. Effects of bilayer phases on phospholipid-poloxamer interactions. Soft Matter. 2009;5(7):1496–1503. doi: 10.1039/b813354a.
  • Dutta S, Watson BG, Mattoo S, et al. Calcein release assay to measure membrane permeabilization by recombinant Alpha-Synuclein. Bio Protoc. 2020;10(14):e3690. doi: 10.21769/bioprotoc.3690.
  • Hausig-Punke F, Richter F, Hoernke M, et al. Tracking the endosomal escape: a closer look at calcein and related reporters. Macromol. Biosci. 2022;22(10):1–26. doi: 10.1002/mabi.202270027.
  • Maherani B, Arab-Tehrany E, Kheirolomoom A, et al. Calcein release behaviour from liposomal bilayer; influence of physicochemical mechanical structural properties of lipids. Biochimie. 2013;95(11):2018–2033. doi: 10.1016/j.biochi.2013.07.006.
  • Hansen A, Mouritsen O, Arouri A. Enzymatic action of phospholipase A2 on liposomal drug delivery systems. Int J Pharm. 2015;491(1-2):49–57. doi: 10.1016/j.ijpharm.2015.06.005.
  • Langton M, Scriven L, Williams N, et al. Triggered release from lipid bilayer vesicles by an artificial transmembrane signal transduction system. J Am Chem Soc. 2017;139(44):15768–15773. doi: 10.1021/jacs.7b07747.
  • Palominos M, Vilches D, Bossel E, et al. Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles. Colloids Surf. B: Biointerfaces. 2016;148:30–40.
  • Flandez K, Bonardd S, Soto-Arriaza MA. Physicochemical properties of L-alpha dipalmitoyl phosphatidylcholine large unilamellar vesicles: Effect of hydrophobic block (PLA/PCL) of amphipathic diblock copolymers. Chem Phys Lipids. 2020;230:104927. doi: 10.1016/j.chemphyslip.2020.104927.
  • Kaddah S, Khreich N, Kaddah F, et al. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol. 2018;113:40–48. doi: 10.1016/j.fct.2018.01.017.
  • Liu W, Wei F, Ye A, et al. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin. Food Chem. 2017;230:6–13. doi: 10.1016/j.foodchem.2017.03.021.
  • Briuglia ML, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015;5(3):231–242.
  • Khan SA, Ilies MA. The phospholipase A2 superfamily: Structure, isozymes, catalysis, physiologic and pathologic roles. Int J Mol Sci. 2023;10(2):1–35.
  • Avoranta T, Sundström J, Korkeila E, et al. The expression and distribution of group IIA phospholipase A2 in human colorectal tumours. Virchows Arch. 2010;457(6):659–667. doi: 10.1007/s00428-010-0992-7.
  • Brglez V, Lambeau G, Petan T. Secreted phospholipases A2 in cancer: diverse mechanisms of action. Biochimie. 2014a;107 Pt A:114–123. doi: 10.1016/j.biochi.2014.09.023.
  • Brglez V, Pucer A, Pungerčar J, et al. Secreted phospholipases A2 are differentially expressed and epigenetically silenced in human breast cancer cells. Biochem Biophys Res Commun. 2014b;445(1):230–235., doi: 10.1016/j.bbrc.2014.01.182.
  • Qu J, Zhao X, Wan G J, et al. Plasma phospholipase A2 activity may serve as a novel diagnostic biomarker for the diagnosis of breast cancer. Oncol Lett. 2018;15(4):5236–5242. doi: 10.3892/ol.2018.7915.
  • Yu JA, Li H, Meng X, et al. Group IIa secretory phospholipase expression correlates with group IIa secretory phospholipase inhibition–mediated cell death in K-Ras mutant lung cancer cells. J. Thorac Cardiovasc Surg. 2012;144(6):1479–1485.
  • Quach N, Arnold R, Cummings B. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol. 2014;90(4):338–348. doi: 10.1016/j.bcp.2014.05.022.
  • Alekseeva AS, Volynsky PE, Boldyrev IA. Estimation of the phospholipase A2 selectivity on POPC/POPG membranes using the interaction map. Biochem Moscow Suppl Ser A. 2021;15(4):329–333. doi: 10.1134/S1990747821050032.
  • Andresen TL, Jørgensen K. Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. Biochim Biophys Acta. 2005;1669(1):1–7.
  • Bohr SS, Thorlaksen C, Kühnel RM, et al. Label-Free fluorescence quantification of hydrolytic enzyme activity on native substrates reveals how lipase function depends on membrane curvature. Langmuir. 2020;36(23):6473–6481. doi: 10.1021/acs.langmuir.0c00787.
  • Fouladi F, Steffen KJ, Mallik S. Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjug Chem. 2017;28(4):857–868. doi: 10.1021/acs.bioconjchem.6b00736.
  • Hong CY, Han CT, Chao L. Nonspecific binding domains in lipid membranes induced by phospholipase A2. Langmuir. 2016;32(27):6991–6999. doi: 10.1021/acs.langmuir.5b03915.
  • Kambayashi Y, Yamamoto Y, Nakano M. Preferential hydrolysis of oxidized phosphatidylcholine in cholesterol-Containing phosphatidylcholine liposome by phospholipase A2. Biochem Biophys Res Commun. 1998;245(3):705–708. doi: 10.1006/bbrc.1998.8421.
  • Mouchlis VD, Chen Y, McCammon AJ, et al. Membrane allostery and unique hydrophobic sites promote enzyme substrate specificity. J Am Chem Soc. 2018;140(9):3285–3291. doi: 10.1021/jacs.7b12045.
  • Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–569. 25, doi: 10.3390/pharmaceutics5040542.
  • Temprana CF, Prieto MJ, Igartúa DE, et al. Diacetylenic lipids in the design of stable lipopolymers able to complex and protect plasmid DNA. Plos One. 2017;12(10):e0186194. doi: 10.1371/journal.pone.0186194.
  • Zhu G, Mock JN, Aljuffali I, et al. Secretory phospholipase A2 responsive liposomes. J Pharm Sci. 2011;100(8):3146–3159. doi: 10.1002/jps.22530.
  • Mumtaz Virk M, Reimhult E. Phospholipase A2-Induced degradation and release from lipid-Containing polymersomes. Langmuir. 2018;34(1):395–405. doi: 10.1021/acs.langmuir.7b03893.
  • Large DE, Abdelmessih RG, Fink EA, et al. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021;176:1–14.
  • Zhang H. 2017. Thin-Film hydration followed by extrusion method for liposome preparation. In: D’Souza G, editor. Liposomes. Methods in molecular biology. Vol. 1522. New York (NY): Humana Press. p. 17–22.
  • Costa AP, Xu X, Burgess DJ. Freeze-anneal-thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm Res. 2014;31(1):97–103. doi: 10.1007/s11095-013-1135-z.
  • Stewart J. Colorimetric determination of phospholipids with ammoniumferrothiocyanate. Anal Biochem. 1980;104(1):10–14. doi: 10.1016/0003-2697(80)90269-9.
  • Hein R, Uzundal C, Hennig A. Simple and rapid quantification of phospholipidsfor supramolecular membrane transport assays. Organ Biomol Chem. 2016;14:2182–2185.
  • Tagami T, Ando Y, Ozeki T. Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A2 for efficient pulmonary drug delivery to lung cancers. Int J Pharm. 2017;517(1-2):35–41. doi: 10.1016/j.ijpharm.2016.11.039.
  • Aydinoglu F, Ogulener N. The role of arachidonic acid/cyclooxygenase Cascade, phosphodiesterase IV, and rho-kinase in H2S-induced relaxation in the mouse corpus cavernosum. Pharmacol Rep. 2017;69(4):610–615.
  • Sampat GH, Hiremath K, Dodakallanavar J, et al. Unravelling snake venom phospholipase A2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep. 2023;75(6):1454–1473. doi: 10.1007/s43440-023-00543-8.
  • Matile S, Sakai N. 2012. Analytical methods in supramolecular chemistry. Schalley CA, editor. Wiley: Weinheim, p. 711–742.
  • Riss TL, Moravec RA, AL, et al. 2004. Cell viability assays. In: Markossian S, Grossman A, Brimacombe K, editors. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences.
  • Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater. 2018;18(11):1–24. 9(1),
  • Feng H, Lu X, Wang W, et al. Block copolymers: Synthesis, self-assembly, and applications. Polymers (Basel). 2017;9(10):494. doi: 10.3390/polym9100494.
  • Kuperkar K, Patel D, Atanase LI, et al. Amphiphilic block copolymers: Their structures, and self-Assembly to polymeric micelles and polymersomes as drug delivery vehicles. Polymers. 2022;14(21):4702. doi: 10.3390/polym14214702.
  • Zhou Q, Zhang Z, Chen T, et al. Preparation and characterization of thermosensitive pluronic F127-b-poly(ε-caprolactone) mixed micelles. Colloids and Surface B: Biointerfaces. 2011;86(1):45–57.
  • Ahmed S, Corvis Y, Gahoual R, et al. Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery. Int J Pharm. 2019b;567:118488. doi: 10.1016/j.ijpharm.2019.118488.
  • Cheng C, Wang J, Kausik R, et al. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromolecules. 2012;13(9):2624–2633. doi: 10.1021/bm300848c.
  • Kim M, Heinrich F, Haugstad G, et al. Spatial distribution of PEO − PPO − PEO block copolymer and PEO homopolymer in lipid bilayers. Langmuir. 2020;36(13):3393–3403. doi: 10.1021/acs.langmuir.9b03208.
  • Wang JY, Chin J, Marks JD, et al. Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress. Langmuir. 2010;26(15):12953–12961. doi: 10.1021/la101841a.
  • Wang J, Marks J, Lee K. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) Effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation. Biomacromolecules. 2012;13(9):2616–2623. doi: 10.1021/bm300847x.
  • Lu T, Wang Z, Ma Y, et al. Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of pH-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid). Int J Nanomedicine. 2012;7:4917–4926.
  • Lopes de Azambuja CR, Gomes dos Santos L, Rodrigues M, et al. Physic-chemical characterization of asolectin–genistein liposomal system: an approach to analyze it’s in vitro antioxidant potential and effect in glioma cells viability. Chem Phys Lipids. 2015;193:24–35. doi: 10.1016/j.chemphyslip.2015.10.001.
  • Németh Z, Csóka I, Semnani Jazani R, et al. Quality by Design-Driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics. 2022;14(9):1–25. 141798, doi: 10.3390/pharmaceutics14091798.
  • Aleandri S, Bombelli C, Bonicelli M, et al. Fusion of gemini based cationic liposomes with cell membrane models: implications for their biological activity. Biochim Biophys Acta. 2013;1828(2):382–390. doi: 10.1016/j.bbamem.2012.10.001.
  • Georgieva R, Mircheva K, Vitkova V, et al. Phospholipase A2‑induced remodeling processes on LiquidOrdered/liquid-Disordered membranes containing docosahexaenoic or oleic acid: a comparison study. Langmuir. 2016;32(7):1756–1770. doi: 10.1021/acs.langmuir.5b03317.
  • Gudmand M, Rocha S, Hatzakis N, et al. Influence of lipid heterogeneity and phase behavior on phospholipase A2 action at the single molecule level. Biophys J. 2010;98(9):1873–1882. doi: 10.1016/j.bpj.2010.01.035.
  • Mohtar LG, Ledesma AE, Disalvo EA, et al. Influence of carbonyl groups on the interaction of PLA2 with lipid interphases. Colloid Interface Sci Commun. 2020;39:100309, 1–8. doi: 10.1016/j.colcom.2020.100309.
  • Sanchez SA, Bagatolli LA, Gratton E, et al. A Two-Photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with Single-Lipid and mixed-lipid giant unilamellar vesicles. Biophys J. 2002;82(4):2232–2243., doi: 10.1016/S0006-3495(02)75569-0.
  • Zhang P, Villanueva V, Kalkowski J, et al. Polyunsaturated phospholipid modified membrane degradation catalyzed by a secreted phospholipase A2. Langmuir. 2019;35(36):11643–11650. doi: 10.1021/acs.langmuir.9b01476.
  • Heiner AL, Gibbons E, Fairbourn JL, et al. Effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biophys J. 2008;15(8):3084–3093.
  • McConnell H, Radhakrishna A. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys Acta Biomembrane. 2003;1610(2):159–173.
  • Mills T, Toombes G, Tristram-Nagle S, et al. Order parameters and areas in fluid-phase oriented lipid membranes using wide angle x-ray scattering. Biophys J. 2008;95(2):669–681. doi: 10.1529/biophysj.107.127845.
  • Saito H, Shinoda W. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study. J Phys Chem B. 2011;115(51):15241–15250. doi: 10.1021/jp201611p.
  • Cournia Z, Ullmann G, Smith J. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane? A molecular dynamics simulation study. J Phys Chem B. 2007;111(7):1786–1801. doi: 10.1021/jp065172i.
  • Decker C, Fahr A, Kuntsche J, et al. Selective partitioning of cholesterol and a model drug into liposomes of varying size. Chem Phys Lipids. 2012;165(5):520–529. doi: 10.1016/j.chemphyslip.2012.04.001.
  • Hung WC, Lee MT, Chen FY, et al. The condensing effect of cholesterol in lipid bilayers. Biophys J. 2007;1(92 (11):3960–3967.
  • Arriaga LR, López-Montero I, Monroy F, et al. Stiffening effect of cholesterol on disordered lipid phases: a combined neutron spin echo + dynamic light scattering analysis of the bending elasticity of large unilamellar vesicles. Biophys J. 2009;96(9):3629–3637. doi: 10.1016/j.bpj.2009.01.045.
  • Favarin B, Andrade M, Bolean M, et al. Effect of the presence of cholesterol in the interfacial microenvironment on the modulation of the alkaline phosphatase activity during in vitro mineralization. Colloids Surf, B. 2017;155:466–476. doi: 10.1016/j.colsurfb.2017.04.051.
  • Burke J, Dennis E. Phospholipase A2 structure/function, mechanism, and signalling. J. Lipid Res. 2009;50(Suppl):S237–S242.
  • Murakami M, Sato H, Taketomi Y. Updating phospholipase A2 biology. Biomolecules. 2020;10(10):1457. doi: 10.3390/biom10101457.
  • Salas D, Flores E, Meléndez J, et al. Increased delivery and cytotoxicity of doxorubicin in HeLa cells using the synthetic cationic peptide pEM-2 functionalized liposomes. Colloids Surf B Biointerfaces. 2023;228:113420, 1–9. doi: 10.1016/j.colsurfb.2023.113420.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.