442
Views
3
CrossRef citations to date
0
Altmetric
Articles

Changes in brain morphometry after motor rehabilitation in chronic stroke

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 277-286 | Received 15 Mar 2021, Accepted 11 Aug 2021, Published online: 02 Sep 2021

References

  • Abela E, Seiler A, Missimer JH, Federspiel A, Hess CW, Sturzenegger M, Weder BJ, Wiest R. 2015. Grey matter volumetric changes related to recovery from hand paresis after cortical sensorimotor stroke. Brain Struct Funct. 220(5):2533–2550.
  • Abo M, Kakuda W, Momosaki R, Harashima H, Kojima M, Watanabe S, Sato T, Yokoi A, Umemori T, Sasanuma J. 2014. Randomized, multicenter, comparative study of NEURO versus CIMT in poststroke patients with upper limb hemiparesis: the NEURO-VERIFY Study. Int J Stroke. 9(5):607–612.
  • Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, Stagg CJ, Johansen-Berg H. 2016. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med. 8(330):1–21.
  • Ashburner J, Friston KJ. 2000. Voxel-based morphometry - The methods. Neuroimage. 11(6):805–821.
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 57(1):289–300.
  • Busch V, Schuierer G, Bogdahn U, May A. 2004. Changes in grey matter induced by training Newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature. 427:311–312.
  • Cai J, Ji Q, Xin R, Zhang D, Na X, Peng R, Li K. 2016. Contralesional cortical structural reorganization contributes to motor recovery after sub-cortical stroke: a longitudinal voxel-based morphometry study. Front Hum Neurosci. 10(August):8.
  • Casula EP, Pellicciari MC, Bonnì S, Spanò B, Ponzo V, Salsano I, Giulietti G, Martino Cinnera A, Maiella M, Borghi I, et al. 2021. Evidence for interhemispheric imbalance in stroke patients as revealed by combining transcranial magnetic stimulation and electroencephalography. Hum Brain Mapp. 42(5):1343–1358.
  • Cheng B, Schulz R, Bönstrup M, Hummel FC, Sedlacik J, Fiehler J, Gerloff C, Thomalla G. 2015. Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke. J Cereb Blood Flow Metab. 35(9):1507–1514.
  • Corti M, Patten C, Triggs W. 2012. Repetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review. Am J Phys Med Rehabil. 91(3):254–270.
  • Coscia M, Wessel MJ, Chaudary U, Millán J, del R, Micera S, Guggisberg A, Vuadens P, Donoghue J, Birbaumer N, Hummel FC. 2019. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain. 142(8):2182–2197.
  • Dahnke R, Yotter RA, Gaser C. 2013. Cortical thickness and central surface estimation. Neuroimage. 65:336–348.
  • Dang C, Liu G, Xing S, Xie C, Peng K, Li C, Li J, Zhang J, Chen L, Pei Z, et al. 2013. Longitudinal cortical volume changes correlate with motor recovery in patients after acute local subcortical infarction. Stroke. 44(10):2795–2801.
  • Dankert HL, Davies PL, Gavin WJ. 2003. Occupational therapy effects on visual-motor skills in preschool children. Am J Occup Ther. 57(5):542–549.
  • Dodd KC, Nair VA, Prabhakaran V. 2017. Role of the contralesional vs. Ipsilesional hemisphere in stroke recovery. Front Hum Neurosci. 11:469.
  • Ediri Arachchi W, Peng Y, Zhang X, Qin W, Zhuo C, Yu C, Liang M. 2020. A systematic characterization of structural brain changes in schizophrenia. Neurosci Bull. 36(10):1107–1122.
  • Fan F, Zhu C, Chen H, Qin W, Ji X, Wang L, Zhang Y, Zhu L, Yu C. 2013. Dynamic brain structural changes after left hemisphere subcortical stroke. Hum Brain Mapp. 34(8):1872–1881.
  • Filippi M, Ceccarelli A, Pagani E, Gatti R, Rossi A, Stefanelli L, Falini A, Comi G, Rocca MA. 2010. Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study. PLoS One. 5(4):e10198.
  • Flynn FG, Benson DF, Ardila A. 1999. Anatomy of the insula - Functional and clinical correlates. Aphasiology. 13(1):55–78.
  • Gaser C, Dahnke R. 2012. A Computational Anatomy Toolbox for the Analysis of Structural MRI data. OHBM2016. 32(7):7743.
  • Gaser C, Volz HP, Kiebel S, Riehemann S, Sauer H. 1999. Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research. Neuroimage. 10(2):107–113.
  • Gauthier LV, Taub E, Mark VW, Barghi A, Uswatte G. 2012. Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke. Stroke. 43(2):453–457.
  • Gauthier LV, Taub E, Perkins C, Ortmann M, Mark VW, Uswatte G. 2008. Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke. 39(5):1520–1525.
  • Gladstone DJ, Danells CJ, Black SE. 2002. The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 16(3):232–240.
  • Govender P, Kalra L. 2007. Benefits of occupational therapy in stroke rehabilitation. Expert Rev Neurother. 7(8):1013–1019.
  • Horn U, Roschka S, Eyme K, Walz AD, Platz T, Lotze M. 2016. Increased ventral premotor cortex recruitment after arm training in an fMRI study with subacute stroke patients. Behav Brain Res. 308:152–159.
  • Hoyer EH, Celnik PA. 2011. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci. 29(6):395–409.
  • Hsieh YW, Wu CY, Lin KC, Chang YF, Chen CL, Liu JS. 2009. Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke. 40(4):1386–1391.
  • Inoue K, Kawashima R, Sugiura M, Ogawa A, Schormann T, Zilles K, Fukuda H. 2001. Activation in the ipsilateral posterior parietal cortex during tool use: A PET study. Neuroimage. 14(6):1469–1475.
  • Kakuda W, Abo M, Kobayashi K, Momosaki R, Yokoi A, Fukuda A, Ito H, Tominaga A. 2011. Combination treatment of low-frequency rTMS and occupational therapy with levodopa administration: An intensive neurorehabilitative approach for upper limb hemiparesis after stroke. Int J Neurosci. 121(7):373–378.
  • Kakuda W, Abo M, Sasanuma J, Shimizu M, Okamoto T, Kimura C, Kakita K, Hara H. 2016. Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: a 6-year Experience of More Than 1700 Japanese Patients. Transl Stroke Res. 7(3):172–179.
  • Kodama M, Ono T, Yamashita F, Ebata H, Liu M, Kasuga S, Ushiba J. 2018. Structural Gray Matter Changes in the Hippocampus and the Primary Motor Cortex on An-Hour-to-One- Day Scale Can Predict Arm-Reaching Performance Improvement. Front Hum Neurosci. 12(June):1–11.
  • Liu J, Wang Q, Liu F, Song H, Liang X, Lin Z, Hong W, Yang S, Huang J, Zheng G, et al. 2017. Altered functional connectivity in patients with post-stroke memory impairment: a resting fMRI study. Exp Ther Med. 14(3):1919–1928.
  • Longhi M, Merlo A, Prati P, Giacobbi M, Mazzoli D. 2016. Instrumental indices for upper limb function assessment in stroke patients: a validation study. J Neuroeng Rehabil. 13(1):52–11.
  • May A, Gaser C. 2006. Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol. 19(4):407–411.
  • May A, Hajak G, Gänssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P. 2007. Structural brain alterations following 5 days of intervention: Dynamic aspects of neuroplasticity. Cereb Cortex. 17(1):205–210.
  • Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE. 2006. Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage. 31(4):1453–1474.
  • Merabet LB, Swisher JD, Mcmains SA, Halko MA, Amedi A, Pascual-Leone A, Somers DC. 2021. Combined activation and deactivation of visual cortex during tactile sensory processing. J Neurophysiol. 97(2):1633–1641.
  • Mietchen D, Gaser C. 2009. Computational morphometry for detecting changes in brain structure due to development, aging, learning, disease and evolution. Front Neuroinform. 3(AUG):1–12.
  • Morris DM, Uswatte G, Crago JE, Cook EW, Taub E. 2001. The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 82(6):750–755.
  • Pundik S, Scoco A, Skelly M, McCabe JP, Daly JJ. 2018. Greater cortical thickness is associated with enhanced sensory function after arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 32(6-7):590–601.
  • Sampaio-Baptista C, Sanders ZB, Johansen-Berg H. 2018. Structural plasticity in adulthood with motor learning and stroke rehabilitation. Annu Rev Neurosci. 41(January):25–40.
  • Sampaio-Baptista C, Scholz J, Jenkinson M, Thomas AG, Filippini N, Smit G, Douaud G, Johansen-Berg H. 2014. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention. Neuroimage. 96(100):158–166.
  • Särkämö T, Ripollés P, Vepsäläinen H, Autti T, Silvennoinen HM, Salli E, Laitinen S, Forsblom A, Soinila S, Rodríguez-Fornells A. 2014. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: A voxel-based morphometry study. Front Hum Neurosci. 8(1 APR):1–16.
  • Steultjens EMJ, Dekker J, Bouter LM, Van de Nes JCM, Cup EHC, Van den Ende CHM. 2003. Occupational therapy for stroke patients: A systematic review. Stroke. 34(3):676–686.
  • Sullivan KJ, Tilson JK, Cen SY, Rose DK, Hershberg J, Correa A, Gallichio J, McLeod M, Moore C, Wu SS, et al. 2011. Fugl-meyer assessment of sensorimotor function after stroke: Standardized training procedure for clinical practice and clinical trials. Stroke. 42(2):427–432.
  • Sung WH, Wang CP, Chou CL, Chen YC, Chang YC, Tsai PY. 2013. Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. Stroke. 44(5):1375–1382.
  • Takeuchi N, Izumi S. 2013. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013:128641.
  • Ueda R, Yamada N, Abo M, Ruwan PW, Senoo A. 2020. MRI evaluation of motor function recovery by rTMS and intensive occupational therapy and changes in the activity of motor cortex. Int J Neurosci. 130(3):309–317.
  • Ueda R, Yamada N, Abo M, Senoo A. 2019a. Relationship between motor function improvements and white matter structure after low-frequency repetitive transcranial magnetic stimulation plus intensive occupational therapy in chronic subcortical stroke patients. Neuroreport. 30(7):485–490.
  • Ueda R, Yamada N, Abo M, Senoo A. 2019b. Correlation analysis of motor function improvement and brain structure for upper limb paralysis. Neuroreport. Neuroreport. 30(2):77–81.
  • Ueda R, Yamada N, Abo M, Senoo A. 2019c. White matter changes follow low-frequency repetitive transcranial magnetic stimulation plus intensive occupational therapy for motor paralysis after stroke: a DTI study using TBSS. Acta Neurol Belg. 121(2):387–396.
  • Urushidani N, Kinoshita S, Okamoto T, Tamashiro H, Abo M. 2018. Low-Frequency rTMS and intensive occupational therapy improve upper limb motor function and cortical reorganization assessed by functional near-infrared spectroscopy in a subacute stroke patient. Case Rep Neurol. 10(2):223–192.
  • Vingerhoets G. 2014. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Front Psychol. 5:151.
  • Wang P, Jia X, Zhang M, Cao Y, Zhao Z, Shan Y, Ma Q, Qian T, Wang J, Lu J, et al. 2018. Correlation of longitudinal gray matter volume changes and motor recovery in patients after pontine infarction. Front Neurol. 9(JUN):1–8.
  • Wassermann EM. 1998. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 108(1):1–16.
  • Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. 2001. Assessing Wolf Motor Function Test as outcome measure for research in patients after stroke. Stroke. 32(7):1635–1639.
  • Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL. 2005. The EXCITE trial: attributes of the wolf motor function test in patients with subacute stroke. Neurorehabil Neural Repair. 19(3):194–205.
  • Wu P, Zhou YM, Liao CX, Tang YZ, Li YX, Qiu LH, Qin W, Zeng F, Liang FR. 2018. Structural changes induced by acupuncture in the recovering brain after ischemic stroke. Evid Based Compl Altern Med. 2018:1–8.
  • Yamada N, Kakuda W, Senoo A, Kondo T, Mitani S, Shimizu M, Abo M. 2013. Functional cortical reorganization after low-frequency repetitive transcranial magnetic stimulation plus intensive occupational therapy for upper limb hemiparesis: Evaluation by functional magnetic resonance imaging in poststroke patients. Int J Stroke. 8(6):422–429.
  • Yamada N, Ueda R, Kakuda W, Momosaki R, Kondo T, Hara T, Senoo A, Abo M. 2017. Diffusion tensor imaging evaluation of neural network development in patients undergoing therapeutic repetitive transcranial magnetic stimulation following stroke. Brain Stimul. 2018:3901016.
  • Yu X, Yang L, Song R, Jiaerken Y, Yang J, Lou M, Jiang Q, Zhang M. 2017. Changes in structure and perfusion of grey matter tissues during recovery from Ischaemic subcortical stroke: a longitudinal MRI study. Eur J Neurosci. 46(7):2308–2314.
  • Zatorre RJ, Fields RD, Johansen-Berg H. 2012. Plasticity in Gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 15(4):528–536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.