10
Views
0
CrossRef citations to date
0
Altmetric
Empirical studies

Teachers’ understanding of assessing computational thinking

ORCID Icon, ORCID Icon & ORCID Icon
Received 25 May 2023, Accepted 05 Jun 2024, Published online: 12 Jul 2024

References

  • Barefoot Computing. (2016). Computational thinking concepts and approaches. https://www.barefootcomputing.org
  • Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17–66). Springer Netherlands. https://doi.org/10.1007/978-94-007-2324-5_2
  • Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21(1), 5–31. https://doi.org/10.1007/s11092-008-9068-5
  • Black, P., & Wiliam, D. (2018). Classroom assessment and pedagogy. Assessment in Education Principles, Policy & Practice, 25(6), 551–575. https://doi.org/10.1080/0969594X.2018.1441807
  • Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M. A., Jasutė, E., Malagoli, C., Masiulionytė-Dagienė, V., & Stupurienė, G. (2022). Reviewing computational thinking in compulsory education (No. JRC128347). Publications Office of the European Union.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589–597. https://doi.org/10.1080/2159676X.2019.1628806
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada.
  • Cabrera, L. (2019). Teacher preconceptions of computational thinking: A systematic literature review. Journal of Technology & Teacher Education, 27(3), 305.
  • Creswell, J. W. (2013). Qualitative inquiry & research design: Choosing among five approaches (3rd ed.). Sage.
  • Crow, T., Kirk, D., Luxton-Reilly, A., & Tempero, E. (2020). Teacher perceptions of feedback in high school programming education: A thematic analysis. WiPSCE ’20: Proceedings of the 15th Workshop on Primary and Secondary Computing Education. https://doi.org/10.1145/3421590.3421595
  • Cutumisu, M., Adams, C., & Lu, C. (2019). A scoping review of empirical research on recent computational thinking assessments. Journal of Science Education and Technology, 28(6), 651–676. https://doi.org/10.1007/s10956-019-09799-3
  • Da Cruz Alves, N., Gresse von Wangenheim, C., & Hauck, J. C. R. (2019). Approaches to assess computational thinking competences based on code analysis in K-12 education: A systematic mapping study. Informatics in Education an International Journal, 18(1), 17–39. https://doi.org/10.15388/infedu.2019.02
  • de Araujo, A. L. S. O., Andrade, W. L., & Serey Guerrero, D. D. (2016, October 12–15). A systematic mapping study on assessing computational thinking abilities. 2016 IEEE Frontiers in Education Conference (FIE), Eire, PA, USA.
  • Denning, P. J., & Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics in Education an International Journal, 20(3), 361–390. https://doi.org/10.15388/infedu.2021.21
  • Dixson, D. D., & Worrell, F. C. (2016). Formative and summative assessment in the classroom. Theory into Practice, 55(2), 153–159. https://doi.org/10.1080/00405841.2016.1148989
  • Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2020). Assessing 4th grade students’ computational thinking through scratch programming projects. Informatics in Education, 19(4), 611–640. https://doi.org/10.15388/infedu.2020.27
  • FNBE. (2014). The National core curriculum for basic education. FNBE National Board of Education. https://www.oph.fi/fi/koulutus-ja-tutkinnot/perusopetuksen-opetussuunnitelman-perusteet
  • Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons from a middle school classroom. In P. J. Rich & C. B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (1st ed. pp. 269–290). Springer International Publishing.
  • Grover, S. (2021). Toward a framework for formative assessment of conceptual learning in K-12 computer science classrooms. Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, New York, NY, USA.
  • Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051
  • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487
  • Holm, L., & Kousholt, K. B. (2019). Beyond washback effect: A multi-disciplinary approach exploring how testing becomes part of everyday school life focused on the construction of pupils’ cleverness. Annual Review of Critical Psychology, 16, 917–952 https://forskning.ruc.dk/files/66195109/ARCP_Special_Issue_Kritische_Psychologie_16_2019.pdf.
  • Irons, J., & Hartnett, M. (2020). Computational thinking in junior classrooms in New Zealand. Journal of Open, Flexible, and Distance Learning, 24(2), 28–42. https://doi.org/10.61468/jofdl.v24i2.425
  • Kalelioglu, F., & Sentance, S. (2019). Teaching with physical computing in school: The case of the micro: Bit. Education and Information Technologies, 25(4), 2577–2603. https://doi.org/10.1007/s10639-019-10080-8
  • Kirk, D., Crow, T., Luxton-Reilly, A., & Tempero, E. (2021). Mind the gap: Searching for clarity in NCEA. Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1 (pp. 192–198). Association for Computing Machinery. https://doi.org/10.1145/3430665.3456318
  • Korhonen, T., Salo, L., Laakso, N., Seitamaa, A., Sormunen, K., Kukkonen, M., & Forsström, H. (2022). Finnish teachers as adopters of educational innovation: Perceptions of programming as a new part of the curriculum. Computer Science Education, 33(1), 1–23. https://doi.org/10.1080/08993408.2022.2095595
  • Lai, X., & Wong, G. K. W. (2022). Collaborative versus individual problem solving in computational thinking through programming: A meta‐analysis. British Journal of Educational Technology, 53(1), 150–170. https://doi.org/10.1111/bjet.13157
  • Liebe, C., & Camp, T. (2019). An examination of abstraction in K-12 computer science education. Koli Calling ’19. ACM International Conference Proceeding Series Koli, Finland https://doi.org/10.1145/3364510.3364526.
  • Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). Computational Thinking Is More about Thinking than Computing. Journal for STEM Educational Research, 3(1), 1–18. https://doi.org/10.1007/s41979-020-00030-2
  • Lodi, M., & Martini, S. (2021). Computational thinking, between papert and wing. Science & Education, 30(4), 883–908. https://doi.org/10.1007/s11191-021-00202-5
  • Mausethagen, S., & Mølstad, C. E. (2015, 2). Shifts in curriculum control: Contesting ideas of teacher autonomy. Nordic Journal of Studies in Educational Policy, 2015(2), 28520. https://doi.org/10.3402/nstep.v1.28520
  • McKenney, S., & Reeves, T. C. (2018). Conducting educational design research (2 ed.). Routledge. https://doi.org/10.4324/9781315105642
  • National Audiovisual Institute, & Finnish National Agency for Education. (2022). New literacies. https://uudetlukutaidot.fi/en/
  • NDET. (2019). Fagfornyelse (Curriculum 2020). Oslo. https://sokeresultat.udir.no/finn-lareplan.html?fltypefiltermulti=Kunnskapsl%c3%b8ftet%202020
  • Newton, P. E. (2007). Clarifying the purposes of educational assessment. Assessment in Education Principles, Policy & Practice, 14(2), 149–170. https://doi.org/10.1080/09695940701478321
  • Nordby, S. K., Bjerke, A. H., & Mifsud, L. (2022). Primary mathematics teachers’ understanding of computational thinking. KI - Künstliche Intelligenz, 36(1), 35–46. https://doi.org/10.1007/s13218-021-00750-6
  • NOU 2015:8. (2015). The school of the future — Renewal of subjects and competences. Ministry of Education and Research. https://www.regjeringen.no/en/dokumenter/nou-2015-8/id2417001/
  • Pérez, A. (2018). A framework for computational thinking dispositions in mathematics education. Journal for Research in Mathematics Education, 49(4), 424–461. https://doi.org/10.5951/jresematheduc.49.4.0424
  • Poulakis, E., & Politis, P. (2021). Computational thinking assessment: Literature review. In T. Tsiatsos, S. Demetriadis, A. Mikropoulos, & V. Dagdilelis (Eds.), Research on E-Learning and ICT in education: Technological, pedagogical and instructional perspectives (pp. 111–128). Springer International Publishing. https://doi.org/10.1007/978-3-030-64363-8_7
  • Román-González, M. (2015). Computational thinking test: Design guidelines and content validation. EDULEARN15 Proceedings, Barcelona, Spain.
  • Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining assessment tools for a comprehensive evaluation of computational thinking interventions. In S.-C. Kong & H. Abelson (Eds.), Computational thinking education (pp. 79–98). Springer Singapore. https://doi.org/10.1007/978-981-13-6528-7_6
  • Scardamalia, M., Bransford, J., Kozma, B., & Quellmalz, E. (2012). New assessments and environments for knowledge building. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 231–300). Springer Netherlands. https://doi.org/10.1007/978-94-007-2324-5_5
  • Scherer, R. (2016). Learning from the past-the need for empirical evidence on the transfer effects of computer programming skills. Frontiers in Psychology, 7, 1390–1390. https://doi.org/10.3389/fpsyg.2016.01390
  • Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Education and Information Technologies, 22(2), 469–495. https://doi.org/10.1007/s10639-016-9482-0
  • Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003
  • So, H.-J., Jong, M. S.-Y., & Liu, C.-C. (2020). Computational thinking education in the Asian Pacific region. The Asia-Pacific Education Researcher, 29(1), 1–8. https://doi.org/10.1007/s40299-019-00494-w
  • Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
  • Tannert, M., Lorentzen, R. F., & Berthelsen, U. D. (2022). Computational thinking as subject matter: As an independent subject or integrated across subjects? In A. Yadav & U. D. Berthelsen (Eds.), Computational thinking in education: A pedagogical perspective (pp. 73–89). Routledge. https://doi.org/10.4324/9781003102991-5
  • Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 education: A conceptual model based on a systematic literature review. Computers and Education, 162, 104083. https://doi.org/10.1016/j.compedu.2020.104083
  • Vinnervik, P. (2023). An in-depth analysis of programming in the Swedish school curriculum—rationale, knowledge content and teacher guidance. Journal of Computers in Education, 10(2), 237–271. https://doi.org/10.1007/s40692-022-00230-2
  • Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
  • Weintrop, D., Wise Rutstein, D., Bienkowski, M., & McGee, S. (2021). Assessing computational thinking: An overview of the field. Computer Science Education, 31(2), 113–116. https://doi.org/10.1080/08993408.2021.1918380
  • Wiliam, D. (2011). What is assessment for learning? Studies in Educational Evaluation, 37(1), 3–14. https://doi.org/10.1016/j.stueduc.2011.03.001
  • Wiliam, D., & Thompson, M. (2008). Integrating assessment with learning: What will it take to make it work? In C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning (1 ed. pp. 53–82). Routledge.
  • Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., & Clayborn, L. (2015). Sowing the seeds: A landscape study on assessment in secondary computer science education. Computer Science Teachers Association (CSTA). https://www.csteachers.org/documents/en-us/78193875-4ed9-42ea-8224-841d13da1f74/1
  • Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding computer science education in schools: Understanding teacher experiences and challenges. Computer Science Education, 26(4), 235–254. https://doi.org/10.1080/08993408.2016.1257418
  • Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. Tech Trends, 60(6), 565–568. https://doi.org/10.1007/s11528-016-0087-7
  • Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational thinking in elementary classrooms: Measuring teacher understanding of computational ideas for teaching science. Computer Science Education, 28(4), 371–400. https://doi.org/10.1080/08993408.2018.1560550
  • Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher education. Communications of the ACM, 60(4), 55–62. https://doi.org/10.1145/2994591
  • Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment for computational thinking. Journal of Educational Computing Research, 53(4), 562–590. https://doi.org/10.1177/0735633115608444