1,379
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Fixation of carbon dioxide by chemoautotrophic bacteria in grassland soil under dark conditions

, , &
Pages 362-371 | Received 30 Nov 2016, Accepted 07 Jan 2017, Published online: 03 Feb 2017

References

  • Akhzari D, Pessarakli M, Eftekhari Ahandani S. 2015. Effects of grazing intensity on soil and vegetation properties in a Mediterranean rangeland. Commun Soil Sci Plant Anal. 46:2798–2806. doi: 10.1080/00103624.2015.1089272
  • Beer LL, Boyd ES, Peters JW, Posewitz MC. 2009. Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol. 20:264–271. doi: 10.1016/j.copbio.2009.06.002
  • Bird SB, Herrick JE, Wander MM, Wright SF. 2002. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ Pollut. 116:445–455. doi: 10.1016/S0269-7491(01)00222-6
  • Cui XY, Wang YF, Niu HS, Wu J, Wang SP, Schnug E, Rogasik J, Fleckenstein J, Tang YH. 2005. Effect of long-term grazing on soil organic carbon content in semiarid steppes in inner Mongolia. Ecol Res. 20:519–527. doi: 10.1007/s11284-005-0063-8
  • Deng L, Zhang ZN, Shangguan ZP. 2014. Long-term fencing effects on plant diversity and soil properties in China. Soil Tillage Res. 137:7–15. doi: 10.1016/j.still.2013.11.002
  • Domagała-Świątkiewicz I, Sady W. 2011. Effect of nitrogen fertilization on P, K, Mg, Ca and S content in soil and edible parts of white cabbage. J Elem. 16:177–193.
  • Dubeux JCB, Jr., Sollenberger LE, Comerford NB, Scholberg JM, Ruggieri AC, Vendramini JMB, Interrante SM, Portier KM. 2006. Management intensity affects density fractions of soil organic matter from grazed bahiagrass swards. Soil Biol Biochem. 38:2705–2711. doi: 10.1016/j.soilbio.2006.04.021
  • Ellis RJ. 1979. The most abundant protein in the world. Trends Biochem Sci. 4:241–244. doi: 10.1016/0968-0004(79)90212-3
  • Evangelou VP, Wang J, Phillips RE. 1994. New developments and perspectives on soil potassium quantity/intensity relationships. Adv Agron. 52:173–227. doi: 10.1016/S0065-2113(08)60624-0
  • Fan ZL. 2008. The fifth carbon fixation pathway. Chinese J Nature. 30:93. (in Chinese)
  • Follett RF, Reed DA. 2010. Soil carbon sequestration in grazing lands: societal benefits and policy implications. Rangeland Ecol Manage. 63:4–15. doi: 10.2111/08-225.1
  • Ge TD, Nie SA, Wu JS, Shen JL, Xiao HA, Tong CL, Huang DF, Hong Y, Iwasaki K. 2011. Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: a case study. J Soils Sediments. 11:25–36. doi: 10.1007/s11368-010-0293-4
  • Ge TD, Wu XH, Chen XJ, Yuan HZ, Zou ZY, Li BZ, Zhou P, Liu SL, Tong CL, Brookes P, Wu JS. 2013. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils. Geochim Cosmochim Acta. 113:70–78. doi: 10.1016/j.gca.2013.03.020
  • Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, editior. Methods of soil analysis. Part 1 – physical and mineralogical methods. 2nd ed. SSSA Book Series No. 5. Madison (WI): SSSA and ASA, p. 383–411.
  • Gomes L, Arrúe JL, López MV, Sterk G, Richard D, Gracia R, Sabre M, Gaudichet A, Frangi JP. 2003. Wind erosion in a semiarid agricultural area of Spain: the WELSONS project. CATENA. 52:235–256. doi: 10.1016/S0341-8162(03)00016-X
  • Herter S, Busch A, Fuchs G. 2002. L-malyl-coenzyme a lyase/β-methylmalyl-coenzyme a lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation. J Bacteriol. 184:5999–6006. doi: 10.1128/JB.184.21.5999-6006.2002
  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W. 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils. 32:390–400. doi: 10.1007/s003740000268
  • Kang YM. 2012. Influence of grassland degradation on soil and vegetation characteristics in Inner Mongolia, China. Pedologist. 56:332–342.
  • Kuo S. 1996. Phosphorus. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series No. 5. Madison (WI): SSSA and ASA, p. 869–919.
  • Liu FH, Conrad R. 2011. Chemolithotrophic acetogenic H2/CO2 utilization in Italian rice field soil. ISME J. 5:1526–1539. doi: 10.1038/ismej.2011.17
  • Ludwig JA, Tongway DJ. 1995. Desertification in Australia: an eye to grass roots and landscapes. Environ Monit Assess. 37:231–237. doi: 10.1007/BF00546891
  • Miao RH, Jiang DM, Musa A, Zhou QL, Guo MX, Wang YC. 2015. Effectiveness of shrub planting and grazing exclusion on degraded sandy grassland restoration in Horqin sandy land in Inner Mongolia. Ecol Eng. 74:164–173. doi: 10.1016/j.ecoleng.2014.10.004
  • Miltner A, Kopinke F, Kindler R, Selesi D, Hartmann A, Kästner M. 2005. Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil. 269:193–203. doi: 10.1007/s11104-004-0483-1
  • Nigro LM, King GM. 2007. Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1,5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments. FEMS Microbiol Ecol. 60:113–125. doi: 10.1111/j.1574-6941.2007.00272.x
  • Northup BK, Brown JR, Holt JA. 1999. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland. Appl Soil Ecol. 13:259–270. doi: 10.1016/S0929-1393(99)00039-6
  • Nowak ME, Beulig F, von Fischer J, Muhr J, Küsel K, Trumbore SE. 2015. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette. Biogeosciences. 12:7169–7183. doi: 10.5194/bg-12-7169-2015
  • Oliver JWK, Machado IMP, Yoneda H, Atsumi S. 2014. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng. 22:76–82. doi: 10.1016/j.ymben.2014.01.001
  • Phillips L, Burton E. 2005. Nutrient leaching in undisturbed cores of an acidic sandy Podosol following simultaneous potassium chloride and di-ammonium phosphate application. Nutri Cycl Agroecosyst. 73:1–14. doi: 10.1007/s10705-005-6080-8
  • Pisciotta JM, Zou YJ, Baskakov IV, Yang C-H. 2010. Light-dependent electrogenic activity of cyanobacteria. PLoS One. 5:e10821. doi: 10.1371/journal.pone.0010821
  • Santoro AL, Bastviken D, Gudasz C, Tranvik L, Enrich-Prast A, Thrush S. 2013. Dark carbon fixation: an important process in lake sediments. PLoS ONE. 8:e65813. doi: 10.1371/journal.pone.0065813
  • Šantrůčková H, Bird MI, Elhottová D, Novák J, Picek T, Šimek M, Tykva R. 2005. Heterotrophic fixation of CO2 in soil. Microb Ecol. 49:218–225. doi: 10.1007/s00248-004-0164-x
  • Schlesinger WH. 1977. Carbon balance in terrestrial detritus. Annu Rev Ecol Syst. 8:51–81. doi: 10.1146/annurev.es.08.110177.000411
  • Schlesinger WH, Andrews JA. 2000. Soil respiration and the global carbon cycle. Biogeochemistry. 48:7–20. doi: 10.1023/A:1006247623877
  • Selesi D, Pattis I, Schmid M, Kandeler E, Hartmann A. 2007. Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J Microbiol Methods. 69:497–503. doi: 10.1016/j.mimet.2007.03.002
  • Selesi D, Schmid M, Hartmann A. 2005. Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol. 71:175–184. doi: 10.1128/AEM.71.1.175-184.2005
  • Shimmel SM. 1987. Dark fixation of carbon dioxide in an agricultural soil. Soil Sci. 144:20–23. doi: 10.1097/00010694-198707000-00004
  • Song CS. 2006. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today. 115:2–32. doi: 10.1016/j.cattod.2006.02.029
  • Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I. 2008. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma. 143:63–72. doi: 10.1016/j.geoderma.2007.09.004
  • Su YZ, Zhao HL, Zhang TH, Zhao XY. 2004. Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China. Soil Tillage Res. 75:27–36. doi: 10.1016/S0167-1987(03)00157-0
  • Tabita FR. 1999. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res. 60:1–28. doi: 10.1023/A:1006211417981
  • Tanaka S, Funakawa S, Kaewkhongkha T, Yonebayashi K. 1998. Labile pools of organic matter and microbial biomass in the surface soils under shifting cultivation in northern Thailand. Soil Sci Plant Nutr. 44:527–537. doi: 10.1080/00380768.1998.10414476
  • Tang ZX, Fan FL, Wan YF, Wei W, Lai LM. 2015. Abundance and diversity of RuBisCO genes responsible for CO2 fixation in arid soils of Northwest China. Pedosphere. 25:150–159. doi: 10.1016/S1002-0160(14)60085-0
  • Tolli J, King GM. 2005. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl Environ Microbiol. 71:8411–8418. doi: 10.1128/AEM.71.12.8411-8418.2005
  • Usui N, Ikenouchi M. 1997. The biological CO2 fixation and utilization project by RITE (1). Highly-effective photobioreactor system. Energy Convers Manage. 38:S487–S492. doi: 10.1016/S0196-8904(96)00315-9
  • Vadas PA, Busch DL, Powell JM, Brink GE. 2015. Monitoring runoff from cattle-grazed pastures for a phosphorus loss quantification tool. Agric Ecosyst Environ. 199:124–131. doi: 10.1016/j.agee.2014.08.026
  • Van Gestel M, Merckx R, Vlassak K. 1996. Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol Biochem. 28:503–510. doi: 10.1016/0038-0717(95)00192-1
  • Videmšek U, Hagn A, Suhadolc M, Radl V, Knicker H, Schloter M, Vodnik D. 2009. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microb Ecol. 58:1–9. doi: 10.1007/s00248-008-9442-3
  • Walkley A. 1947. A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63:251–264. doi: 10.1097/00010694-194704000-00001
  • Wang CT, Long RJ, Wang QL, Jing ZC, Shi JJ, Du YG, Cao GM. 2008. Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of alpine meadows in the headwater region of three rivers in China. Chin J Appl Environ Biol. 14:225–230. (in Chinese).
  • Wang D, Liu Y, Wu GL, Ding LM, Yang Z, Hao HM. 2015. Effect of rest-grazing management on soil water and carbon storage in an arid grassland (China). J Hydrol. 527:754–760. doi: 10.1016/j.jhydrol.2015.05.036
  • Wang W, Fang JY. 2009. Soil respiration and human effects on global grasslands. Glob Planet Change. 67:20–28. doi: 10.1016/j.gloplacha.2008.12.011
  • Watson GMF, Tabita FR. 1997. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Micorobiol Lett. 146:13–22. doi: 10.1111/j.1574-6968.1997.tb10165.x
  • Wen HY, Niu DC, Fu H, Kang J. 2013. Experimental investigation on soil carbon, nitrogen, and their components under grazing and livestock exclusion in steppe and desert steppe grasslands, Northwestern China. Environ Earth Sci. 70:3131–3141. doi: 10.1007/s12665-013-2376-1
  • Whitehead DC. 2000. Nutrient elements in grassland: soil-plant-animal relationships. Wallingford (UK): CABI, p. 185.
  • Wu XH, Ge TD, Yuan HZ, Li BZ, Zhu HH, Zhou P, Sui FG, O’Donnell AG, Wu JS. 2014. Changes in bacterial CO2 fixation with depth in agricultural soils. Appl Microbiol Biotechnol. 98:2309–2319. doi: 10.1007/s00253-013-5179-0
  • Xie YZ, Wittig R. 2004. The impact of grazing intensity on soil characteristics of Stipa grandis and Stipa bungeana steppe in northern China (autonomous region of Ningxia). Acta Oecol. 25:197–204. doi: 10.1016/j.actao.2004.01.004
  • Yousuf B, Keshri J, Mishra A, Jha B. 2012. Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene. 506:18–24. doi: 10.1016/j.gene.2012.06.083
  • Yuan HZ, Ge TD, Chen CY, O’Donnell AG, Wu JS. 2012. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl Environ Microbiol. 78:2328–2336. doi: 10.1128/AEM.06881-11
  • Yuan HZ, Ge TD, Wu XH, Liu SL, Tong CL, Qin HL, Wu MN, Wei WX, Wu JS. 2012. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Appl Microbiol Biotechnol. 95:1061–1071. doi: 10.1007/s00253-011-3760-y
  • Yuan HZ, Ge TD, Zou SY, Wu XH, Liu SL, Zhou P, Chen XJ, Brookes P, Wu JS. 2013. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large subunit gene abundance in soils. Biol Fertil Soils. 49:609–616. doi: 10.1007/s00374-012-0750-x
  • Zuo XA, Zhang J, Zhou X, Zhao XY, Wang SK, Lian J, Lv P, Knops J. 2015. Changes in carbon and nitrogen storage along a restoration gradient in a semiarid sandy grassland. Acta Oecol. 69:1–8. doi: 10.1016/j.actao.2015.08.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.