533
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Modelling nitrogen transport and transformation in a transplanted rice field experiment with reduced irrigation

, , &
Pages 457-470 | Received 10 Oct 2017, Accepted 16 Jan 2018, Published online: 24 Jan 2018

References

  • Adhya TK, Patnaik P, Rao VR, Sethunathan N. 1996. Nitrification of ammonium in different components of a flooded rice soil system. Biol Fert Soils. 23:321–326. doi: 10.1007/BF00335961
  • Antonopoulos VZ. 2010. Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece. Agr Water Manage. 98:321–330. doi: 10.1016/j.agwat.2010.08.026
  • Becker M, Asch F, Maskey SL, Pande KR, Shah SC, Shrestha S. 2007. Effects of transition season management on soil N dynamics and system N balances in rice–wheat rotations of Nepal. Field Crop Res. 103:98–108. doi: 10.1016/j.fcr.2007.05.002
  • Belder P, Spiertz JHJ, Bouman BAM, Lu G, Tuong TP. 2005. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crop Res. 93:169–185. doi: 10.1016/j.fcr.2004.09.022
  • Bouman BAM, Tuong TP. 2001. Field water management to save water and increase its productivity in irrigated lowland rice. Agr Water Manage. 49:11–30. doi: 10.1016/S0378-3774(00)00128-1
  • Cao Y, Tian Y, Yin B, Zhu Z. 2013. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crop Res. 147:23–31. doi: 10.1016/j.fcr.2013.03.015
  • Chen CF, Chiang PS. 1963. Ammonium ion adsorption of some paddy soils. ACTA Pedologica Sinica. 11:171–184.
  • Chen S, Cai SG, Chen X, Zhang GP. 2009. Genotypic differences in growth and physiological responses to transplanting and direct seeding cultivation in rice. Rice Sci. 16:143–150. doi: 10.1016/S1672-6308(08)60071-2
  • Dong W, Guo J, Xu L, Song Z, Zhang J, Tang A, Zhang X, Leng C, Liu Y, Wang L, et al. 2017. Water regime-nitrogen fertilizer incorporation interaction: field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China. J Environ Sci. doi:10.1016/j.jes.2017.06.007 (In Press).
  • Duan Y, Yin X, Zhang Y, Shen Q. 2007. Mechanisms of enhanced rice growth and nitrogen uptake by nitrate. Pedosphere. 17:697–705. doi: 10.1016/S1002-0160(07)60084-8
  • Huang JB, Fan XH, Zhang SL, Ge GF, Sun YH, Feng X. 2007. Investigation on the economically-ecologically appropriate amount of nitrogen fertiliser applied in rice production in Fe-leaching-stagnic anthrosols of the Taihu Lake region. Acta Ecologica Sinica. 27:588–595 (in Chinese with English abstract).
  • Huang M, Chen J, Cao F, Jiang L, Zou Y. 2016. Rhizosphere processes associated with the poor nutrient uptake in no-tillage rice (Oryza sativa L.) at tillering stage. Soil Tillage Res. 163:10–13. doi: 10.1016/j.still.2016.05.002
  • Huang S, Lv W, Bloszies S, Shi Q, Pan X, Zeng Y. 2016. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis. Field Crop Res. 192:118–125. doi: 10.1016/j.fcr.2016.04.023
  • Karandish F, Šimůnek J. 2017. Two-dimensional modeling of nitrogen and water dynamics forvarious N-managed water-saving irrigation strategies using HYDRUS. Agr Water Manage. 193:174–190. doi: 10.1016/j.agwat.2017.07.023
  • Kirk GJD, Kronzucker HJ. 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot. 96:639–646. doi: 10.1093/aob/mci216
  • Kyaw KM, Toyota K, Okazaki M, Motobayashi T, Tanaka H. 2005. Nitrogen balance in a paddy field planted with whole crop rice (Oryza Sativa Cv. Kusahonami) during two rice-growing seasons. Biol Fert Soils. 42:72–82. doi: 10.1007/s00374-005-0856-5
  • Lan T, Han Y, Roelcke M, Nieder R, Cai Z. 2014. Sources of nitrous and nitricoxides in paddy soils: nitrification and denitrification. J Environ Sci. 26:581–592. doi: 10.1016/S1001-0742(13)60453-2
  • Li B, Xin W, Sun S, Shen Q, Xu G. 2006. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil. 287:145–159. doi: 10.1007/s11104-006-9051-1
  • Li H, Liang X, Chen Y, Tian G, Zhang Z. 2008. Ammonia volatilization from urea in rice fields with zero-drainage water management. Agr Water Manag. 95:887–894e. doi: 10.1016/j.agwat.2007.05.016
  • Li Y, Šimůnek J, Jing L, Zhang Z, Ni L. 2014. Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D. Agr Water Manage. 142:38–46. doi: 10.1016/j.agwat.2014.04.021
  • Li Y, Šimůnek J, Wang S, Yuan J, Zhang W. 2017. Modeling of soil water regime and water balance in a transplanted rice field experiment with reduced irrigation. Water. 9:248. doi: 10.3390/w9040248
  • Li Y, Šimůnek J, Zhang Z, Jing L, Ni L. 2015. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agr Water Manage. 148:213–222. doi: 10.1016/j.agwat.2014.10.010
  • Lin D, Fan X, Hu F, Zhao H, Luo J. 2007. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere. 17:639–645. doi: 10.1016/S1002-0160(07)60076-9
  • Linquist BA, Koffler K, Hill JE, van Kessel C. 2011. Rice field drainage affects nitrogen dynamics and management. Calif Agric. 65:80–84. doi: 10.3733/ca.v065n02p80
  • Liu Y, Yu X, He Y, Long XJ. 2014. The research progress of water-saving irrigation in China since 2000. Adv Mater Res. 955–959:3206–3210. doi: 10.4028/www.scientific.net/AMR.955-959.3206
  • Mikha MM, Rice CW, Milliken GA. 2005. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol Biochem. 37:339–347. doi: 10.1016/j.soilbio.2004.08.003
  • Moreno-Cornejo J, Zornoza R, Faz A. 2014. Carbon and nitrogen mineralization during decomposition of crop residues in a calcareous soil. Geoderma. 230–231:58–63. doi: 10.1016/j.geoderma.2014.03.024
  • Nangia V, Gowda PH, Mulla DJ, Sands GR. 2008. Water quality modeling of fertilizer management impacts on nitrate losses in tile drains at the field scale. J Environ Qual. 37:296–307. doi: 10.2134/jeq2007.0224
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. J Hydrol. 10:282–290. doi: 10.1016/0022-1694(70)90255-6
  • Peng S, Yang S, Xu J, Luo Y, Hou H. 2011. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 9:333–342. doi: 10.1007/s10333-010-0246-y
  • Penton CR, Deenik JL, Popp BN, Bruland GL, Engstrom P, St. Louis D, Tiedje J. 2013. Importance of sub-surface rhizosphere-mediated coupled nitrification-denitrification in a flooded agroecosystem in Hawaii. Soil Biol Biochem. 57:362–373. doi: 10.1016/j.soilbio.2012.10.018
  • Peralta AL, Ludmer S, Kent AD. 2013. Hydrologic history influences microbial community composition and nitrogen cycling under experimental drying/wetting treatments. Soil Biol Biochem. 66:29–37. doi: 10.1016/j.soilbio.2013.06.019
  • Phogat V, Mahadevan M, Skewes M, Cox JW. 2012. Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design. Irrigation Sci. 30:315–333. doi: 10.1007/s00271-011-0284-2
  • Qiao J, Yang L, Yan T, Xue F, Zhao D. 2013. Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer. Eur J Agron. 49:93–103. doi: 10.1016/j.eja.2013.03.008
  • Rejesus RM, Palis FG, Rodriguez DGP, Lampayan RM, Bouman BAM. 2011. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: evidence from rice producers in the Philippines. Food Policy. 36:280–288. doi: 10.1016/j.foodpol.2010.11.026
  • Renard JJ, Calidonna SE, Henley MV. 2004. Fate of ammonia in the atmosphere—a review for applicability to hazardous releases. J Hazard Mater. 108:29–60. doi: 10.1016/j.jhazmat.2004.01.015
  • Roberts TL, Ross WJ, Norman RJ, Slaton NA, Wilson CE. 2011. Predicting nitrogen fertilizer needs for rice in Arkansas using alkaline Hydrolyzable-nitrogen. Soil Sci Soc Am J. 75:1–11. doi: 10.2136/sssaj2010.0145
  • Roost N, Cai XL, Turral H, Molden D, Cui YL. 2008. Adapting to intersectoral transfers in the Zhanghe irrigation system, China Part II: impacts of in-system storage on water balance and productivity. Agr Water Manage. 95:685–697. doi: 10.1016/j.agwat.2008.01.011
  • Sarkar MC, Banerjee NK, Rana DS, Uppal KS. 1991. Field measurements of ammonia volatilization losses of nitrogen from urea applied to wheat. Fertil News. 36:25–28.
  • Šimůnek J, Hopmans JW. 2009. Modeling compensated root water and nutrient uptake. Ecol Model. 220:505–521. doi: 10.1016/j.ecolmodel.2008.11.004
  • Šimůnek J, van Genuchten MT, Šejna M. 2012. The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media, Technical Manual, Version 2.0, PC-Progress, Prague, Czech Republic, pp. 258.
  • Siyal AA, Bristow KL, Šimůnek J. 2012. Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies. Agr Water Manage. 115:242–251. doi: 10.1016/j.agwat.2012.09.008
  • Sommer SG, Schjoerring K, Denmead OT. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Adv Agron. 82:557–622. doi: 10.1016/S0065-2113(03)82008-4
  • Tan X, Shao D, Gu W, Liu H. 2015. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agr Water Manage. 150:67–80. doi: 10.1016/j.agwat.2014.12.005
  • Tan X, Shao D, Liu H, Yang F, Xiao C, Yang H. 2013. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 11:381–395. doi: 10.1007/s10333-012-0328-0
  • Tang JY, Riley WJ. 2013. A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation. Hydrol Earth Syst Sci. 17:873–893. doi: 10.5194/hess-17-873-2013
  • van Genuchten MT. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 44:892–898. doi: 10.2136/sssaj1980.03615995004400050002x
  • Wang MY, Glass ADM, Shaff JE, Kochian LV. 1994. Ammonium uptake by rice roots: III. Electrophysiology. Plant Physiol. 104:899–906. doi: 10.1104/pp.104.3.899
  • Wang S, Shan J, Xia Y, Quan T, Xia L, Lin J, Yan X. 2017. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons. Sci Total Environ. 593–594:347–356. doi: 10.1016/j.scitotenv.2017.03.159
  • Willmott CJ. 1981. On the validation of model. Phys Geogr. 2:184–194.
  • Xing G, Zhao X, Xiong Z, Yan X, Xu H, Xie Y, Shi S. 2009. Nitrous oxide emission from paddy fields in China. Acta Ecologica Sinica. 29:45–50. doi: 10.1016/j.chnaes.2009.04.006
  • Yang J, Zhou Q, Zhang J. 2017. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. Crop J. 5:151–158. doi: 10.1016/j.cj.2016.06.002
  • Yang S, Peng S, Xu J, Hou H, Gao X. 2013. Nitrogen loss from paddy field with different water and nitrogen managements in Taihu Lake Region of China. Commun Soil Sci Plant Anal. 44:2393–2407. doi: 10.1080/00103624.2013.803564
  • Yang Y, Meng T, Qian X, Zhang J, Cai Z. 2017. Evidence for nitrification ability controlling nitrogen use efficiency and N losses via denitrification in paddy soils. Biol Fertil Soils. 53:349–356. doi: 10.1007/s00374-017-1185-1
  • Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. 2013. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 144:212–224. doi: 10.1016/j.fcr.2012.12.003
  • Zhang JS, Zhang FP, Yang JH, Wang JP, Cai ML, Li CF, Cao CG. 2011. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric Ecosyst Environ. 140:164–173. doi: 10.1016/j.agee.2010.11.023
  • Zhao X, Zhou Y, Min J, Wang S, Shi W, Xing G. 2012. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric Ecosyst Environ. 156:1–11. doi: 10.1016/j.agee.2012.04.024
  • Zhou S, Sakiyama Y, Riya S, Song X, Terada A, Hosomi M. 2012. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the 15N isotopic technique. Sci Total Environ. 430:93–100. doi: 10.1016/j.scitotenv.2012.04.056
  • Zhou W, Xia L, Yan X. 2017. Vertical distribution of denitrification end-products in paddy soils. Sci Total Environ. 576:462–471. doi: 10.1016/j.scitotenv.2016.10.135
  • Zhu JG, Han Y, Liu G, Zhang YL, Shao XH. 2000. Nitrogen in percolation water in paddy fields with a rice/wheat rotation. Nutr Cycl Agroecosyst. 57:75–82. doi: 10.1023/A:1009712404335
  • Zhu ZL, Fan XH, Sun YH, Wang DJ. 2004. Nitrogen-cycle in an early-rice field and its environmental effects in Taihu Lake Region. Crop Res. 4:187–191 (In Chinese with English Abstract).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.