402
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Comparison of multivariate models and variable selection algorithms for rapid analysis of the chemical composition of field crops

, &
Pages 452-464 | Received 08 Nov 2018, Accepted 21 Mar 2019, Published online: 30 Mar 2019

References

  • Abrahamsson C, Johansson J, Sparéna A, Lindgren F. 2003. Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemometr Intell Lab. 69:3–12. doi: 10.1016/S0169-7439(03)00064-9
  • Andersen CM, Bro R. 2010. Variable selection in regression–a tutorial. J Chemometr. 24:728–737. doi: 10.1002/cem.1360
  • Centner V, Massart DL, De Noord OE, De Jong S, Vandeginste BM, Sterna C. 1996. Elimination of uninformative variables for multivariate calibration. Anal Chem. 68:3851–3858. doi: 10.1021/ac960321m
  • Chauchard F, Cogdill R, Roussel S, Roger JM, Bellon-Maurel V. 2004. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemometr Intell Lab. 71:141–150. doi: 10.1016/j.chemolab.2004.01.003
  • Chodak M. 2008. Application of near infrared spectroscopy for analysis of soils, litter and plant materials. Pol J Environ Stud. 17:631–642.
  • Chong IG, Jun CH. 2005. Performance of some variable selection methods when multicollinearity is present. Chemometr Intell Lab. 78:103–112. doi: 10.1016/j.chemolab.2004.12.011
  • Clark DH, Mayland HF, Lamb RC. 1987. Mineral analysis of forages by near infrared reflectance spectroscopy. Agron J. 79:485–490. doi: 10.2134/agronj1987.00021962007900030016x
  • Cozzolino D, Fassio A, Fernández E, Restaino E, La Manna A. 2006. Measurement of chemical composition in wet whole maize silage by visible and near infrared reflectance spectroscopy. Anim Feed Sci Tech. 129:329–336. doi: 10.1016/j.anifeedsci.2006.01.025
  • De Boever JL, Eeckhout W, Boucque CV. 1994. The possibilities of near infrared reflection spectroscopy to predict total-phosphorus, phytate-phosphorus and phytase activity in vegetable feedstuffs. NJAS-Wagen J Life Sc. 42:357–369.
  • Elvidge CD. 1990. Visible and near infrared reflectance characteristics of dry plant materials. Int J Remote Sens. 11:1775–1795. doi: 10.1080/01431169008955129
  • Foley WJ, McIlwee A, Lawler I, Aragones L, Woolnough AP, Berding N. 1998. Ecological applications of near infrared reflectance spectroscopy – a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia. 116:293–305. doi: 10.1007/s004420050591
  • García-Ciudad A, Ruano A, Becerro F, Zabalgogeazcoa I, Vázquez de Aldana BR, García-Criado B. 1999. Assessment of the potential of NIR spectroscopy for the estimation of nitrogen content in grasses from semiarid grasslands. Anim Feed Sci Tech. 77:91–98. doi: 10.1016/S0377-8401(98)00237-5
  • Gillon D, Houssard C, Joffre R. 1999. Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia. 118:173–182. doi: 10.1007/s004420050716
  • Han Y, Chen JM, Pan T, Liu GS. 2015. Determination of glycated hemoglobin using near-infrared spectroscopy combined with equidistant combination partial least squares. Chemometr Intell Lab. 145:84–92. doi: 10.1016/j.chemolab.2015.04.015
  • Hetta M, Mussadiq Z, Wallsten J, Halling M, Swensson C, Geladi P. 2017. Prediction of nutritive values, morphology and agronomic characteristics in forage maize using two applications of NIRS spectrometry. Acta Agr Scand B-S P. 67:326–333.
  • Huang CJ, Han LJ, Yang ZL, Liu X. 2009. Exploring the use of near infrared reflectance spectroscopy to predict minerals in straw. Fuel. 88:163–168. doi: 10.1016/j.fuel.2008.07.031
  • Karimi Y, Prashe S, Madani A, Kim S. 2008. Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations. Can Biosyst Eng. 50:13–20.
  • Kennard RW, Stone LA. 1969. Computer aided design of experiments. Technometrics. 11:137–148. doi: 10.1080/00401706.1969.10490666
  • Leardi R, Boggia R, Terrile M. 1992. Genetic algorithms as a strategy for feature selection. J Chemometr. 6:267–281. doi: 10.1002/cem.1180060506
  • Leardi R, González AL. 1998. Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometr Intell Lab. 41:195–207. doi: 10.1016/S0169-7439(98)00051-3
  • Li HD, Liang YZ, Xu QS, Cao DS. 2009. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal Chim Acta. 648:77–84. doi: 10.1016/j.aca.2009.06.046
  • Li HD, Xu QS, Liang YZ. 2014. Libpls: an integrated library for partial least squares regression and discriminant analysis. PeerJ PrePrints. 2:e190v191.
  • Li SJ, Liu BS, Cai YD, Li YX. 2007. Predicting protein N-glycosylation by combining functional domain and secretion information. J Biomol Struct Dyn. 25:49–54. doi: 10.1080/07391102.2007.10507154
  • Liao YT, Fan YX, Cheng F. 2012. On-line prediction of pH values in fresh pork using visible/near-infrared spectroscopy with wavelet de-noising and variable selection methods. J Food Eng. 109:668–675. doi: 10.1016/j.jfoodeng.2011.11.029
  • Lu RK. 2000. Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press.
  • Malhotra R, Singh N, Singh Y. 2011. Genetic algorithms: concepts, design for optimization of process controllers. Comput Inf Sci. 4:39–54.
  • Morlini I. 2006. On multicollinearity and concurvity in some nonlinear multivariate models. Stat Method Appl. 15:3–26. doi: 10.1007/s10260-006-0005-9
  • Parsons SA, Lawler IR, Congdon RA, Williams SE. 2011. Rainforest litter quality and chemical controls on leaf decomposition with near-infrared spectrometry. J Plant Nutr Soil Sc. 174:710–720. doi: 10.1002/jpln.201100093
  • Peltre C, Thuriès L, Barthès B, Brunet D, Morvan T, Nicolardot B, Parnaudeau V, Houot S. 2011. Near infrared reflectance spectroscopy: a tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil. Soil Biol Biochem. 43:197–205. doi: 10.1016/j.soilbio.2010.09.036
  • Petisco C, García-Criado B, de Aldana BRV, Zabalgogeazcoa I, Mediavilla S, García-Ciudad A. 2005. Use of near-infrared reflectance spectroscopy in predicting nitrogen, phosphorus and calcium contents in heterogeneous woody plant species. Anal Bioanal Chem. 382:458–465. doi: 10.1007/s00216-004-3046-7
  • Rao BV, Gopalakrishna SJ. 2009. Hardgrove grindability index prediction using support vector regression. Int J Miner Process. 91:55–59. doi: 10.1016/j.minpro.2008.12.003
  • Ruano-Ramos A, García-Ciudad A, García-Criado B. 1999. Near infrared spectroscopy prediction of mineral content in botanical fractions from semi-arid grasslands. Anim Feed Sci Tech. 77:331–343. doi: 10.1016/S0377-8401(98)00245-4
  • Shi TZ, Chen YY, Liu HZ, Wang JJ, Wu GF. 2014. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection. Appl Spectrosc. 68:831–837. doi: 10.1366/13-07294
  • Smola AJ, Schölkopf B. 2004. A tutorial on support vector regression. Stat Comput. 14:199–222. doi: 10.1023/B:STCO.0000035301.49549.88
  • Thissen U, Pepers M, Ustun B, Melssen WJ, Buydens LMC. 2004. Comparing support vector machines to PLS for spectral regression applications. Chemometr Intell Lab. 73:169–179. doi: 10.1016/j.chemolab.2004.01.002
  • Thomas EV, Haaland DM. 1990. Comparison of multivariate calibration methods for quantitative spectral analysis. Anal Chem. 62:1091–1099. doi: 10.1021/ac00209a024
  • van Maarschalkerweerd M, Husted S. 2015. Recent developments in fast spectroscopy for plant mineral analysis. Front Plant Sci. 6:169. doi: 10.3389/fpls.2015.00169
  • Vapnik VV. 1995. The nature of statistical learning theory. New York: Springer-Verlag.
  • Vasques GM, Grunwald S, Sickman JO. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma. 146:14–25. doi: 10.1016/j.geoderma.2008.04.007
  • Vázquez de Aldana BR, García Criado B, García Ciudad A, Pérez Corona ME. 1995. Estimation of mineral content in natural grasslands by near infrared reflectance spectroscopy. Commun Soil Sci Plant. 26:1383–1396. doi: 10.1080/00103629509369379
  • Viscarra Rossel RA, Behrens T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma. 158:46–54. doi: 10.1016/j.geoderma.2009.12.025
  • Vohland M, Besold J, Hill J, Fruend HC. 2011. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma. 166:198–205. doi: 10.1016/j.geoderma.2011.08.001
  • Vohland M, Ludwig M, Thiele-Bruhn S, Ludwig B. 2014. Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection. Geoderma. 223–225:88–96. doi: 10.1016/j.geoderma.2014.01.013
  • Wang JJ, Cui LJ, Cao WX, Shi TZ, Chen YY, Cao Y. 2014. Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma. 216:1–9. doi: 10.1016/j.geoderma.2013.10.024
  • Williams PC. 1987. Implementation of near-infrared technology. In: Williams P, Norris K, editor. Near-infrared technology. In the agricultural and food industries. 2nd ed. St. Paul, MN: American Association of Cereal Chemists; p. 145–169.
  • Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab. 58:109–130. doi: 10.1016/S0169-7439(01)00155-1
  • Xu SX, Shi XZ, Wang MY, Zhao YC. 2016. Determination of rice root density at the field level using visible and near-infrared reflectance spectroscopy. Geoderma. 267:174–184. doi: 10.1016/j.geoderma.2016.01.007
  • Zou XB, Zhao JW, Povey MJW, Holmes M, Mao HP. 2010. Variables selection methods in near-infrared spectroscopy. Anal Chim Acta. 667:14–32. doi: 10.1016/j.aca.2010.03.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.