10,691
Views
3
CrossRef citations to date
0
Altmetric
Articles

How 75 years of rubber monocropping affects soil fauna and nematodes as the bioindicators for soil biodiversity quality index

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 612-622 | Received 13 Sep 2021, Accepted 24 Jan 2022, Published online: 23 Feb 2022

References

  • Ahrends A, Hollingsworth PM, Ziegler AD, Fox JM, Chen H, Su Y, Xu J. 2015. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environ Change. 34:48–58. DOI:10.1016/j.gloenvcha.2015.06.002.
  • Anderson JM, Ingram JSI. 1993. Tropical soil biology and fertility: a handbook of methods. Wallingford: CAB International. DOI:10.2307/2261129.
  • Angers D, Eriksen-Hamel N. 2008. Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci Soc Am J. 72:1370–1374. DOI:10.2136/sssaj2007.0342.
  • AOAC. 1984. Official methods of analysis. Arlington: Association of Official Analytical Chemists.
  • Bach EM, Ramirez KS, Fraser TD, Wall DH. 2020. Soil biodiversity integrates solutions for a sustainable future. Sustainability. 12:2662. DOI:10.3390/su12072662.
  • Belnap J, Phillips S, Sherrod SK, Moldenke A. 2005. Soil biota can change after exotic plant invasion: does this affect ecosystem processes? Ecology. 86:3007–3017. DOI:10.1890/05-0333.
  • Blanchart E, Albrecht A, Brown G, Decaens T, Duboisset A, Lavelle P, Mariani L, Roose E. 2004. Effects of tropical endogeic earthworms on soil erosion. Agric Ecosyst Environ. 104:303–315. DOI:10.1016/j.agee.2004.01.031.
  • Bongers T, Bongers M. 1998. Functional diversity of nematodes. Appl Soil Ecol. 10:239–251. DOI:10.1016/S0929-1393(98)00123-1.
  • Bray RH, Kurtz LT. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59:39–46. DOI:10.1097/00010694-194501000-00006.
  • Brussaard L. 1998. Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol. 9:123–135. DOI:10.1016/S0929-1393(98)00066-3.
  • Capinera JL. 2008. Encyclopedia of entomology. Heidelberg: Springer Science & Business Media. DOI:10.1007/978-1-4020-6359-6.
  • Chambon B, Ruf F, Kongmanee C, Angthong S. 2016. Can the cocoa cycle model explain the continuous growth of the rubber (Hevea brasiliensis) sector for more than a century in Thailand? J Rural Stud. 44:187–197. DOI:10.1013/j.jrurstud.2016.02.003.
  • Chapman HD. 1965. Cation-exchange capacity. In: Black CA, editor. Methods of soil analysis. Vol. 2. Madison: American Society of Agronomy; p. 891–901.
  • de Blécourt M, Brumme R, Xu J, Corre MD, Veldkamp E. 2013. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS One. 8:e69357. DOI:10.1371/journal.pone.0069357.
  • Demetrio WC, Dionísio JA, Maceda A. 2019. Negative effects of earthworms on soil nematodes are dependent on earthworm density, ecological category and experimental conditions. Pedobiologia. 76:150568. DOI:10.1016/j.pedobi.2019.150568.
  • Drescher J, Rembold K, Allen K, Beckschäfer P, Buchori D, Clough Y, Faust H, Fauzi AM, Gunawan D, Hertel D, et al. 2016. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos Trans R Soc B Biol Sci. 371:20150275. DOI:10.1098/rstb.2015.0275.
  • Duddigan S, Gil-Martinez M, Fraser T, Green I, Diaz A, Sizmur T, Pawlett M, Raulund-Rasmussen K, Tibbett M. 2020. Evaluating heathland restoration belowground using different quality indices of soil chemical and biological properties. Agronomy. 10:1140. DOI:10.3390/agronomy10081140.
  • Ehrlich PR, Pringle R. 2008. Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions. PNAS. 105:11579–11586. DOI:10.1073/pnas.0801911105.
  • Elser JJ, Bracken MES, Cleland EE, Griner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett. 10:1135–1142. DOI:10.1111/j.1461-0248.2007.0113.x.
  • European Commission. 2010. The factory of life: why soil biodiversity is so important. Luxembourg: Office for Official Publications of the European Union. DOI:10.2779/17050.
  • FAO. 2012. World agriculture watch: methodological framework summary version 2.6. Rome: FAO.
  • FAO. 2020. State of knowledge of soil biodiversity-status, challenges and potentialities. Rome: FAO. DOI:10.4060/cb1928en.
  • Ferris H. 2010. Form and function: metabolic footprints of nematodes in the soil food web. Eur J Soil Biol. 46:97–104. DOI:10.1016/j.ejsobi.2010.01.003.
  • Fiorini A, Boselli R, Maris SC, Santelli S, Perego A, Acutis M, Brenna S, Tabaglio V. 2020. Soil type and cropping system as drivers of soil quality indicators response to no-till: a 7-year study. Appl Soil Ecol. 155:103646. DOI:10.1016/j.apsoil.2020.103646.
  • Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Brühl CA, Donald PF, Phalan B. 2008. How will oil palm expansion affect biodiversity? Trends Ecol Evol. 23:538–545. DOI:10.1016/j.tree.2008.06.012.
  • Fox J, Castella J. 2013. Expansion of rubber (Hevea brasiliensis) in mainland Southeast Asia: what are the prospects for small holders? J Peasant Stud. 40:155–170. DOI:10.1080/03066150.2012.750605.
  • Ganesh PS, Gajalakshmi S, Abbasi SA. 2009. Vermicomposting of the leaf litter of acacia (Acacia auriculiformis): possible roles of reactor geometry, polyphenols, and lignin. Bioresour Technol. 100:1819–1827. DOI:10.1016/j.biortech.2008.09.051.
  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Bååth E, Bloem J, de Ruiter PC, et al. 2000. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos. 90:279–294. DOI:10.1034/j.1600-0706.2000.900208.x.
  • Guéi AM, Tondoh JE. 2012. Ecological preferences of earthworms for land-use types in semi-deciduous forest areas, Ivory Coast. Ecol Indic. 18:644–651. DOI:10.1016/j.ecolind.2012.01.018.
  • Haggar J, Pons D, Saenz L, Vides M. 2019. Contribution of agroforestry systems to sustaining biodiversity in fragmented forest landscapes. Agric Ecosyst Environ. 283:106567. DOI:10.1016/j.agee.2019.06.006.
  • Herren GL, Habraken J, Waeyenberge L, Haegeman A, Viaene N, Cougnon M, Rehuel D, Steel H, Bert W. 2020. Effects of synthetic fertilizer and farm compost on soil nematode community in long-term crop rotation plots: a morphological and metabarcoding approach. PLoS ONE. 15:e0230153. DOI:10.1371/journal.pone.0230153.
  • IRSG. 2015. Rubber statistical bulletin. Singapore: International Rubber Study Group.
  • Jiang YJ, Liu MQ, Zhang JB, Yan C, Chen XY, Chen LJ, Li HX, Zhang XX, Sun B. 2017. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. ISME J. 11:2705–2717. DOI:10.1038/ismej.2017.120.
  • Kajak A. 1995. The role of soil predators in decomposition processes. Eur J Entomol. 92:573–580. [accessed 2021 Dec 5]. https://www.eje.cz/pdfs/eje/1995/03/06.pdf.
  • Kazakou E, Fried G, Richarte J, Gimenez O, Violle C, Metay A. 2016. A plant trait-based response-and-effect frameworl to assess vineyard inter-row soil management. Bot Lett. 163:1–16. DOI:10.1080/23818107.2016.1232205.
  • Li H, Ma Y, Aide TM, Liu W. 2008. Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. For Ecol Manage. 255:16–24. DOI:10.1016/j.foreco.2007.06.051.
  • Li S, Song M, Jing S. 2021. Effects of different carbon inputs on soil nematode abundance and community composition. Appl Soil Ecol. 163:103915. DOI:10.1016/j.apsoil.2021.103915.
  • Liu CA, Liang MY, Nie Y, Tang JW, Siddique KHM. 2019. The conversion of tropical forests to rubber plantations accelerates soil acidification and changes the distribution of soil metal ions in topsoil layers. Sci Total Environ. 696:134082. DOI:10.1016/j.scitotenv.2019.134082.
  • Ludwig JA, Reynold JF. 1988. Statistical ecology: a primer on computing and methods. New York: John Wiley and Sons. DOI:10.1016/0304-3800(91)90106-B.
  • Melero S, López-Garrido R, Murillo M, Moreno F. 2009. Conservation tillage: shortand long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Till Res. 104:292–298. DOI:10.1016/j.still.2009.04.001.
  • Melman DA, Kelly C, Schneekloth J, Caldeŕon F, Fonte SJ. 2019. Tillage and residue management drive rapid changes in soil macrofauna communities and soil properties in a semiarid cropping system of Eastern Colorado. Appl Soil Ecol. 143:98–106. DOI:10.1016/j.apsoil.2019.05.022.
  • Meteorological department. 2015. Agrometeorological report – September 2015. Bangkok: Meteorological Department.
  • Micucci FG, Taboada MA. 2006. Soil physical properties and soybean (Glycine max, Merrill) root abundance in conventionally and zero-tilled soil in the humid pampas of Argentina. Soil Till Res. 86:152–162. DOI:10.1016/j.still.2005.02.004.
  • Moazzam NS, Zhang Y, Liqing S, Zhao W, Zhang X. 2014. Managing carbon sinks in rubber (Hevea brasilensis) plantation by changing rotation length in SW China. PLoS One. 9:e115234. DOI:10.1371/journal.pone.0115234.
  • Mulder C, Van Wijnen HJ, Van Wezel AP. 2005. Numerical abundance and biodiversity of belowground taxocenes along a pH gradient across the Netherlands. J Biogeogr. 32:1775–1790. DOI:10.1111/j.1365-2699.2005.01321.x.
  • Neher DA. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Phytopathol. 48:371–394. DOI:10.1146/annurev-phyto-073009-114439.
  • Nielsen UN, Wall DH, Six J. 2015. Soil biodiversity and the environment. Annu Rev Environ Resour. 40:63–90. DOI:10.1146/annurev-environ-102014-021257.
  • Obriot F, Stauffer M, Goubard Y, Cheviron N, Peres G, Eden M, Revallier A, Vieuble-Gonod L, Houot S. 2016. Multi-criteria indices to evaluate the effects of repeated organic amendment applications on soil and crop quality. Agric Ecosyst Environ. 232:165–178. DOI:10.1016/j.agee.2016.08.004.
  • Peech M. 1965. Hydrogen-ion activity. In: Black CA, editor. Methods of soil analysis. Vol. 2. Wisconsin: American Society of Agronomy; p. 914–926.
  • Pielou EC. 1966. The measurement of diversity in different types of biological collections. J Theoretical Biol. 13:131–144. DOI:10.1016/0022-5193(66)90013-0.
  • R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Rousseau L, Fonte SJ, Téllez O, Van der Hoek R, Lavelle P. 2013. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol Indicat. 27:71–82. DOI:10.1016/j.ecolind.2012.11.020.
  • Santos PZF, Crouzeilles R, Sansevero JBB. 2019. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For Ecol Manage. 433:140–145. DOI:10.1016/j.foreco.2018.10.064.
  • Schneider AK, Schröder B. 2012. Perspectives in modelling earthworm dynamics and their feedbacks with abiotic soil properties. Appl Soil Ecol. 58:29–36. DOI:10.1016/j.apsoil.2012.02.020.
  • Seinhorst JW. 1956. The quantitative extraction of nematodes from soil. Nematologica. 1:249–267. DOI:10.1163/187529256X00096.
  • Semper-Pascual A, Decarre J, Baumann M, Busso JM, Camino M, Gómez-Valencia B, Kuemmerle T. 2019. Biodiversity loss in deforestation frontiers: linking occupancy modelling and physiological stress indicators to understand local extinctions. Biol Conserv. 236:281–288. DOI:10.1016/j.biocon.2019.05.050.
  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol Lett. 11:1252–1264. DOI:10.1111/j.1461-0248.2008.01245.x.
  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustmante M, et al. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil. 1:665–685. DOI:10.5194/soil-1-665-2015.
  • Sofo A, Mininni AN, Ricciuti P. 2020. Comparing the effects of soil fauna on litter decomposition and organic matter turnover in sustainably and conventionally managed olive orchards. Geoderma. 372:114393. DOI:10.1016/j.geoderma.2020.114393.
  • Tan B, Wu F, Yang W, Yu S, Liu L, Wang A, Yang Y. 2013. Seasonal dynamics of soil fauna in the subalpine and alpine forests of west Sichuan at different altitudes. Acta Ecol Sin. 33:12–22. DOI:10.1016/j.chnaes.2012.12.003.
  • Tibbett M, Gil-Martínezb M, Fraserc T, Greend ID, Duddigana S, De Oliveiraa VH, Raulund-Rasmussene K, Sizmurf T, Diaz A. 2019. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena. 180:401–415. DOI:10.1016/j.catena.2019.03.013.
  • Tien G, Olimah JA, Adeoye GO, Kang BT. 2000. Regeneration of earthworm population in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Sci Soc Am J. 64:222–228. DOI:10.2136/sssaj2000.641222x.
  • Treonis AM, Austin EE, Buyer JS, Maul JE, Spicer L, Zasada IA. 2010. Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl Soil Ecol. 46:103–110. DOI:10.1016/j.apsoil.2010.06.017.
  • Turbé A, Toni AD, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S. 2010. Soil biodiversity: functions, threats and tools for policy makers. Report for European Commission (DG Environment). Paris: Bio Intelligence Service, IRD, and NIOO.
  • Turner BL, Condron LM. 2013. Pedogenesis, nutrient dynamics, and ecosystem development: the legacy of TW Walker and JK Syers. Plant Soil. 367:1–10. DOI:10.1007/s11104-013-1750-9.
  • Van Noordwijk M, Cerri C, Woomer PL, Nugroho K, Bernoux M. 1997. Soil carbon dynamics in the humid tropical forest zone. Geoderma. 79:187–225. DOI:10.1016/S0016-7061(97)00042-6.
  • Van Strien AJ, Soldaat LL, Gregory RD. 2012. Desirable mathematical properties of indicators for biodiversity change. Ecol Indic. 14:202–208. DOI:10.1016/j.ecolind.2011.07.007.
  • Villenave C, Ekschmitt K, Nazaret S, Bongers T. 2004. Interactions between nematodes and microbial communities in a tropical soil following manipulation of the soil food web. Soil Biol Biochem. 36:2033–2043. DOI:10.1016/j.soilbio.2004.05.022.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29–38. DOI:10.1097/00010694-193401000-00003.
  • Warren-Thomas E, Dolman PM, Edwards DP. 2015. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conser Lett. 8:230–241. DOI:10.1111/conl.12170.
  • Wu P, Wang C. 2019. Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: the significance for soil fauna diversity monitoring. Geoderma. 337:266–272. DOI:10.1016/j.geoderma.2018.09.031.
  • Xu X, Sun Y, Sun J, Cao P, Wang Y, Chen HYH, Wang W, Ruan H. 2020. Cellulose dominantly affects soil fauna in the decomposition of forest litter: a meta-analysis. Geoderma. 378:114620. DOI:10.1016/j.geoderma.2020.114620.
  • Ye Y, Rui Y, Zeng Z, He X, Wang K, Zhao J. 2020. Responses of soil nematode community to monoculture or mixed culture of a grass and a legume forage species in China. Pedosphere. 30:791–800. DOI:10.1016/S1002-0160(20)60039-X.
  • Zhang H, Zhang GL, Zhao YG, Zhao WJ, Qi ZP. 2007. Chemical degradation of a Ferralsol (Oxisol) under intensive rubber (Hevea brasiliensis) farming in tropical China. Soil Till Res. 93:109–116. DOI:10.1016/j.still.2006.03.013.