1,204
Views
3
CrossRef citations to date
0
Altmetric
Articles

Mycorrhizal species selectivity of sweet sorghum genotypes and their effect on nutrients uptake

ORCID Icon & ORCID Icon
Pages 733-743 | Received 30 Dec 2021, Accepted 01 Apr 2022, Published online: 16 May 2022

References

  • Abdelhalim T, Jannoura R, Joergensen RG. 2019. Mycorrhiza response and phosphorus acquisition efficiency of sorghum cultivars differing in strigolactone composition. Plant Soil. 437:55–63.
  • Abdelhalim T, Jannoura R, Joergensen RG. 2020. Arbuscular mycorrhizal dependency and phosphorus responsiveness of released, landrace and wild Sudanese sorghum genotypes. Arch Agron Soil Sci. 66:706–716.
  • Abdelhameid NM. 2020. Effect of mycorrhizal inoculation and potassium fertilization on grain yield and nutrient uptake of sweet sorghum cultivated under water stress in calcareous soil. Egypt J Soil Sci. 60:17–29. Win
  • Badi OBM, Abdelhalim TS, Eltayeb MM, Gorafi YSA, Tsujimoto H, Taniguchi T. 2019. Dominance of limited arbuscular mycorrhizal fungal generalists of Sorghum bicolor in a semi-arid region in Sudan. Soil Sci Plant Nutr. 65:570–578.
  • Clark RB. 2002. Differences among mycorrhizal fungi for mineral uptake per root length of switchgrass grown in acidic soil. J Plant Nutr. 25:1753–1772.
  • Clark RB, Reinhard N. 1991. Effects of soil-temperature on root and shoot growth traits and iron-deficiency chlorosis in sorghum genotypes grown on a low iron calcareous soil. Plant Soil. 130:97–103.
  • Cobb AB, Wilson GWT, Goad CL, Bean SR, Kaufman RC, Herald TJ, Wilson JD. 2016. The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: enhancing sustainability through plant-microbial partnership. Agric Ecosyst Environ 233:432–440.
  • Dar RA, Dar EA, Kaur A, Phutela UGJR, Reviews SE. 2018. Sweet sorghum-a promising alternative feedstock for biofuel production. Renew Sustain Energy Rev. 82:4070–4090.
  • de Oliveira IF, Simeone MLF, de Guimaraes CC, Garcia NS, Schaffert RE, de Sousa SM. 2021. Sorgoleone concentration influences mycorrhizal colonization in sorghum. Mycorrhiza 31:259–264.
  • Garg N, Chandel S. 2011. Arbuscular mycorrhizal networks: process and functions. In: Sustainable agriculture volume 2. Springer; p. 907–930.
  • Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84:489–500.
  • Hocquette J-F, Gigli S. 2005. The challenge of quality. Indicators of Milk and Beef Quality EAAP Publication. 112:13–22.
  • Janos DP. 2007. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91.
  • Johnson NC, Graham JH. 2013. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil. 363:411–419.
  • Kamaei R, Faramarzi F, Parsa M, Jahan M. 2019. The effects of biological, chemical, and organic fertilizers application on root growth features and grain yield of sorghum. J Plant Nutr. 42:2221–2233.
  • Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol Res. 92:486–488.
  • Kumar P, Fulekar MH. 2019. Mycorrhizal soil development using sorghum bicolor for rhizospheric bioremediation of heavy metals. Biosci Biotechnol Res Commun 12:688–697.
  • Leiser WL, Olatoye MO, Rattunde HFW, Neumann G, Weltzien E, Haussmann BIG. 2016. No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of West African sorghums. Plant Soil. 401:51–64.
  • Liang X, Erickson JE, Vermerris W, Rowland DL, Sollenberger LE, Silveira ML. 2017. Root architecture of sorghum genotypes differing in root angles under different water regimes. J Crop Improv. 31:39–55.
  • McGowan AR, Nicoloso RS, Diop HE, Roozeboom KL, Rice CW. 2019. Soil organic carbon, aggregation, and microbial community structure in annual and perennial biofuel crops. J Agron. 111:128–142.
  • Mehraban A, Vazan S, Rad MRN, Ardakany AR. 2009. Effect of vesicular-arbuscular mycorrhiza (VAM) on yield of sorghum cultivars. J Food Agric Environ. 7:461–463.
  • Murphy J, Riley JP. 1962. A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta. 27:31–36.
  • Ortas I. 1996. The influence of use of different rates of mycorrhizal inoculum on root infection, plant growth, and phosphorus uptake. Commun Soil Sci Plant Anal. 27:2935–2946.
  • Ortas I. 2012a. Do maize and pepper plants depend on mycorrhizae in terms of phosphorus and zinc uptake? J Plant Nutr. 35:1639–1656.
  • Ortas I. 2012b. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Res. 125:35–48.
  • Ortas I. 2019. Role of Microorganisms (Mycorrhizae) in Organic Farming. In: Organic Farming: Global Perspectives and Methods. p. 181–211.
  • Ortas I, Harris PJ, Rowell DL. 1996. Enhanced uptake of phosphorus by mycorrhizal sorghum plants as influenced by forms of nitrogen. Plant Soil. 184:255–264.
  • Ortas I. 2017. Mycorrhizae: soil quality. In: Lal R, editor. Encyclopedia of soil science, Vols. I–III. New York: Taylor & Francis; p. 1505–1510.
  • Ortaş I, Harris PJ. 1996. The effect of partial soil sterilization and seasonal change on soil degradation (N-minerilization and soil chemical properties). In: Kapur S, editor. 1st international conference on land degradation. Adana: Çukurova Universitey; p. 204–207.
  • Powell JR, Rillig MC. 2018. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 220:1059–1075.
  • Rengel Z, Marschner P. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. 168:305–312.
  • Saleh AS, Zhang Q, Chen J, Shen Q. 2013. Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf. 12:281–295.
  • Sisaphaithong T, Kondo D, Matsunaga H, Kobae Y, Hata S. 2012. Expression of plant genes for arbuscular mycorrhiza-inducible phosphate transporters and fungal vesicle formation in sorghum, barley, and wheat roots. Biosci Biotechnol Biochem 76:2364–2367.
  • Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V. 2009. Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Appl Soil Ecol. 43:32–39.
  • Symanczik S, Krutzmann J, Nehls U, Boller T, Courty PE. 2020. Expression of major intrinsic protein genes in sorghum bicolor roots under water deficit depends on arbuscular mycorrhizal fungal species. Soil Biol Biochem 140:5.
  • Watts-Williams SJ, Gill AR, Jewell N, Brien CJ, Berger B, Tran BTT, Mace E, Cruickshank AW, Jordan DR, Garnett T, et al. 2022. Enhancement of sorghum grain yield and nutrition: A role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. Plants People Planet. 4:143–156.
  • White PJ, George TS, Dupuy LX, Karley AJ, Valentine T. 2013. Root traits for infertile soils. Front Plant Sci. 4:7.