1,438
Views
0
CrossRef citations to date
0
Altmetric
Articles

Liming alkaline clay soils: effects on soil structure, nutrients, barley growth and yield

, , , , &
Pages 803-817 | Received 10 Oct 2021, Accepted 10 Jun 2022, Published online: 04 Jul 2022

References

  • Al-Mukhtar M, Lasledj A, Alcover JF. 2010. Behaviour and mineralogy changes in lime-treated expansive soil at 20 degrees C. Appl Clay Sci. 50(2):191–198. doi:10.1016/j.clay.2010.07.023.
  • Anonymous. 2003. Richtwerte zur Einstufung der Mikronährstoffgehalte in Böden bei Anwendung det CAT-Methode. Merkblatt. Thüringer Landesanstalt für Landwirtschaft, Abteilung Agroökologie, Ackerbau und Grünland Abteilung Untersuchungswesen. Thüringer Ministerium Für Landwirtschaft, Naturschutz und Umwelt. Jena, Germany. 2 pp.
  • Barrow N. 2017. The effects of pH on phosphate uptake from the soil. Plant Soil. 410:401–410. doi:10.1007/s11104-016-3008-9.
  • Barrow NJ. 2021. Comparing two theories about the nature of soil phosphate. Eur J Soil Sci. 72:679–685. doi:10.1111/ejss.13027.
  • Barrow NJ, Debnath A, Sen A. 2020. Measurement of the effects of pH on phosphate availability. Plant Soil. 454:217–224. doi:10.1007/s11104-020-04647-5.
  • Bennett JM, Greene R, Murphy B, Hocking P, Tongway D. 2014. Influence of lime and gypsum on long-term rehabilitation of a Red sodosol, in a semi-arid environment of New South Wales. Soil Res. 52:120–128.
  • Berglund G. 1971. Kalkens inverkan på jordens struktur. Lantbrukshögskolan. Uppsala, institutionen för lantbrukets hydroteknik. Grundförbättring. 1971(2):81–93.
  • Bergmann W. 1992. Nutritional disorders of plants: development, visual and analytical diagnosis, 3rd ed. Jena, Stuttgart, New York: Gustav Fischer Verlag. 741 pp.
  • Bermudez M, Mallarino AP. 2002. Yield and early growth responses to starter fertilizer in no-till corn assessed with precision agriculture technologies. Agron J. 94:1024–1033. doi:10.2134/agronj2002.1024.
  • Blackert C. 1996. Plöjningsfri odling och strukturkalkning på lerjordar. (Ploughless tillage and structural liming on clay soils). Swedish University of Agricultural Sciences, Department of soil sciences Meddelanden från jordbearbetningsavdelningen nr 20.
  • Blomquist J, Englund J-E, Berglund K. 2022. Soil characteristics and tillage can predict the effect of ‘structure lime’ on soil aggregate stability. Soil Res. 60(4):373–384. doi:10.1071/sr21022.
  • Blomquist J, Simonsson M, Etana A, Berglund K. 2018. Structure liming enhances aggregate stability and gives varying crop responses on clayey soils. Acta Agri Scand Sect B-Soil Plant Sci. 68:311–322. doi:10.1080/09064710.2017.1400096.
  • Chan K, Heenan D. 1998. Effect of lime (CaCO3) application on soil structural stability of a red earth. Soil Res. 36:73–86.
  • Choquette M, Bérubé M-A, Locat J. 1987. Mineralogical and microtextural changes associated with lime stabilization of marine clays from eastern Canada. Appl Clay Sci. 2:215–232.
  • Conyers MK, Scott BJ, Whitten MG. 2020. The reaction rate and residual value of particle size fractions of limestone in southern New South Wales. Crop Past Sci. 71:368–378. doi:10.1071/cp20045.
  • de Castro OM, de Camargo OA, Vieira SR, Vasques J. 1999. Effect of two types of lime on some soil physical attributes of an oxisol from Brazil. Commun Soil Sci Plan. 30:2183–2195. doi:10.1080/00103629909370364.
  • EEA. 2019. Climate change adaptation in the agriculture sector in Europe. European Environment Agency, Copenhagen, Denmark. Report 4, 112 pp.
  • Egnér H, Riehm H, Domingo WR. 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. (Investigations on soil chemical analysis as a basis of the evaluation of plant nutrient status of soils. II. Chemical extraction methods for phosphorous and potassium determination). Kungl. Lantbrukshögskolans annaler (The annals of the Royal agricultural college of Sweden) 26, 199-215 (in German).
  • Fernández V, Brown PH. 2013. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front Plant Sci. 4:1–5 doi:10.3389/fpls.2013.00289.
  • Fernández V, Eichert T. 2009. Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci. 28:36–68. doi:10.1080/07352680902743069.
  • Fernández V, Sotiropoulos T, Brown PH. 2013. Foliar fertilisation: scientific principles and field practices. Paris: International Fertilizer Industry Association (IFA).
  • Frank T, Zimmermann I, Horn R. 2019. The need for lime in dependence on clay content in arable crop production in Germany. Soil and Tillage Research. 191:11–17.
  • Frank T, Zimmermann I, Horn R. 2020. Lime application in marshlands of Northern Germany—Influence of liming on the physicochemical and hydraulic properties of clayey soils. Soil Tillage Res. 204:1–10.
  • Gnyp M, Panitzki M, Reusch S. 2015. Proximal nitrogen sensing by off-nadir and nadir measurements in winter wheat canopy. In: Stafford J., editor. Precision Agriculture ´15, Conference: 10th European Conference on Precision Agriculture, 12-16 July 2015. Tel Aviv: Wagening Academic Publisher, Wageningen, The Netherlands pp. 43–50. doi:10.3920/978-90-8686-814-8_4.
  • Holland JE, Bennett AE, Newton AC, White PJ, McKenzie BM, George TS, Pakeman RJ, Bailey JS, Fornara DA, Hayes RC. 2018.: liming impacts on soils, crops and biodiversity in the UK: A review. Sci Total Environ. 610-611:316–332. doi:10.1016/j.scitotenv.2017.08.020.
  • Holmes JC, Donald AH, Chapman W, Lang RW, Smith KA, Franklin MF. 1983. Effects of soil compaction, seed depth, form of nitrogen-fertilizer placement and manganese availablity on barley. J Sci Food Agric. 34:671–684. doi:10.1002/jsfa.2740340703.
  • Hoyt P. 1981. Improvements in soil tilth and rapeseed emergence by lime applications on acid soils in the Peace River region. Can J Soil Sci. 61:91–98. doi:10.4141/cjss81-010.
  • Kaiser DE, Mallarino AP, Bermudez M. 2005. Corn grain yield, early growth, and early nutrient uptake as affected by broadcast and in-furrow starter fertilization. Agron J. 97:620–626. doi:10.2134/agronj2005.0620.
  • Keiblinger KM, Bauer LM, Deltedesco E, Holawe F, Unterfrauner H, Zehetner F, Peticzka R. 2016. Quicklime application instantly increases soil aggregate stability. International Agrophysics. 30:123–128. doi:10.1515/intag-2015-0068.
  • Kritz G. 1983. Såbäddar för vårstråsäd (Physical conditions in cereal seedbeds). Swedish University of Agricultural Sciences. Dep. of Soil Sciences, Uppsala. Rapporter från jordbearbetningsavdelningen (Reports from the Division of Soil Management), nr 65.
  • Ledin S. 1981. Physical and micromorphological studies of the effects of lime on a clay soil. Akademisk avhandling, Agr. Dr (PhD thesis), Sveriges Lantbruksuniversitet (Swedish University of Agricultural Sciences), Uppsala. ISBN: 91-576-0900-4.
  • Mallarino AP, Bergmann N, Kaiser DE. 2011. Corn responses to in-furrow phosphorus and potassium starter fertilizer applications. Agron J. 103:685–694. doi:10.2134/agronj2010.0377.
  • Nkebiwe PM, Weinmann M, Bar-Tal A, Muller T. 2016.: fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 196:389–401. doi:10.1016/j.fcr.2016.07.018.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ 939; USA. Dept. of Agriculture.
  • Olsson Å, Persson L, Olsson S. 2011. Variations in soil characteristics affecting the occurrence of Aphanomyces root rot of sugar beet - risk evaluation and disease control. Soil Biol Biochem. 43:316–323. doi:10.1016/j.soilbio.2010.10.017.
  • Olsson Å, Persson L, Olsson S. 2019. Influence of soil characteristics on yield response to lime in sugar beet. Geoderma. 337:1208–1217. doi:10.1016/j.geoderma.2018.11.020.
  • Penn CJ, Camberato JJ. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture-Basel. 9(1):18. doi:10.3390/agriculture9060120.
  • Quinn DJ, Lee CD, Poffenbarger HJ. 2020.: Corn yield response to sub-surface banded starter fertilizer in the US: A meta-analysis. Field Crops Res. 254:1–8. doi:10.1016/j.fcr.2020.107834.
  • Rausch C, Bucher M. 2002. Molecular mechanisms of phosphate transport in plants. Planta. 216:23–37. doi:10.1007/s00425-002-0921-3.
  • Rerkasem B, Lordkaew S, Dell B. 1997. Boron requirement for reproductive development in wheat (reprinted from plant nutrition for sustainable food production and environment, 1997). Soil Sci Plant Nutr. 43:953–957.
  • Riley D, Barber SA. 1971. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Proceedings. Soil Science Society of America. 35:301–306. doi:10.2136/sssaj1971.03615995003500020035x.
  • Römer W, Schilling G. 1986. Phosphorus requirements of the wheat plant in various stages in its life-cycle. Plant Soil. 91:221–229. doi:10.1007/bf02181789.
  • Siman G, Berglund K, Eriksson L. 1984. Effekt av stora kalkgivor på jordens struktur, växtnäringshushållning och skördens storlek (Effect of large lime quantities on soil structure, nutrient balance and crop yields). A. Kalkens effekt på markens växtnäringshushållning, skördens storlek och skördeprodukternas innehåll av växtnäring (Effect of lime on soil properties, crop yields and nutrient concentrations in yield products). Swedish University of Agricultural Sciences, Department of soil sciences, Avdelningen för växtnäringslära (Division of Soil Fertility) Rapport 148.
  • Stenberg M, Stenberg B, Rydberg T. 2000. Effects of reduced tillage and liming on microbial activity and soil properties in a weakly-structured soil. Appl Soil Ecol. 14:135–145.
  • Ulén B, Etana A. 2014. Phosphorus leaching from clay soils can be counteracted by structure liming. Acta Agri Scand Sect B-Soil Plant Sci. 64:425–433. doi:10.1080/09064710.2014.920043.
  • Vange MS, Holmern K, Nissen P. 1974. Multiphasic uptake of sulfate by barley roots. 1) effects of analogs, phosfate and pH. Physiol Plant. 31:292–301. doi:10.1111/j.1399-3054.1974.tb03709.x.
  • Vargas G, Verdejo J, Rivera A, Suárez D, Youlton C, Celis-Diez JL, Le Bissonnais Y, Dovletyarova EA, Neaman A. 2019. The effect of four calcium-based amendments on soil aggregate stability of two sandy topsoils. J Plant Nutr Soil Sci. 182:159–166. doi:10.1002/jpln.201700562.
  • Wichmann W. 1976. Ermittlung von Grenzwerten der Pfantzenanalyse zur Kennzeichnung der Magnesium-Versorgung von Getreide in Schleswig-Holstein. Diss. Univ. Kiel.
  • Wortmann CS, Xerinda SA, Mamo M, Shapiro CA. 2006.: No-till row crop response to starter fertilizer in eastern Nebraska: I. irrigated and rainfed corn. Agron J. 98:156–162. doi:10.2134/agronj2005.0015.
  • Zadoks JC, Chang TT, Konzak CF. 1974. Decimal code for growth stages of cereals. Weed Res. 14:415–421. doi:10.1111/j.1365-3180.1974.tb01084.x.