751
Views
1
CrossRef citations to date
0
Altmetric
Award Review

Engineering aspects of rate-related processes in food manufacturing

Pages 517-531 | Received 29 Oct 2014, Accepted 26 Nov 2014, Published online: 06 Jan 2015

References

  • Broughton DB. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent, 2,985,589 (1961).
  • Hashimoto K, Adachi S, Noujima H, Maruyama H. Models for the separation of glucose/fructose mixture using a simulated moving-bed adsorber. J. Chem. Eng. Jpn. 1983;16:400–406.10.1252/jcej.16.400
  • Hashimoto K, Shirai Y, Morishita M, Adachi S. A simplified design method for a simulated moving-bed adsorber. Kagakukougaku Ronbunshu. 1990;16:193–196 (in Japanese).10.1252/kakoronbunshu.16.193
  • Hashimoto K, Adachi S, Shirai Y, Horie M. Continuous separation of α-cyclodextrin and glucose using a simulated moving-bed adsorber. J. Food Eng. 1988;8:187–200.10.1016/0260-8774(88)90053-2
  • Hashimoto K, Adachi S, Shirai Y. Continuous desalting of proteins with a simulated moving-bed adsorber. Agric. Biol. Chem. 1988;52:2161–2167.10.1271/bbb1961.52.2161
  • Hashimoto K, Shirai Y, Adachi S, Horie M. Comparison of efficiency in separation of maltose and glucose between conventional batch chromatography and simulated moving-bed adsorber. Kagakukougaku Ronbunshu. 1991;17:623–626 (in Japanese).10.1252/kakoronbunshu.17.623
  • Hashimoto K, Yamada M, Shirai Y, Adachi S. Continuous separation of glucose-salts mixture with nonlinear and linear adsorption isotherms by using a simulated moving-bed adsorber. J. Chem. Eng. Jpn. 1987;20:405–410.10.1252/jcej.20.405
  • Hashimoto K, Shirai Y, Morishita M, Adachi S. Continuous separation of glycerol and NaCl with linear and unfavorable adsorption isotherms by use of a simulated moving-bed adsorber. J. Chem. Eng. Jpn. 1992;25:453–455.10.1252/jcej.25.453
  • Hashimoto K, Yamada M, Adachi S, Shirai Y. A simulated moving-bed adsorber with three zones for continuous separation of L-phenylalanine and NaCl. J. Chem. Eng. Jpn. 1989;22:432–434.
  • Hashimoto K, Shirai Y, Adachi S. A simulated moving-bed adsorber for the separation of tricomponents. J. Chem. Eng. Jpn. 1993;26:52–56.10.1252/jcej.26.52
  • Hashimoto K, Morishita M, Adachi S, Shindo K, Shirai Y, Tanigaki M. Continuous separation of bio-components by rotating annular chromatography. Prep. Chromatogr. 1989;1:163–177.
  • Hashimoto K, Adachi S, Noujima N, Ueda Y. A new process combining adsorption and enzyme reaction for producing higher-fructose syrup. Biotechnol. Bioeng. 1983;25:2371–2393.10.1002/(ISSN)1097-0290
  • Adachi S, Watanabe T, Kohashi M. An enzyme reactor based on the difference in migration rate in gel chromatographic columns between enzyme and substrate. Agric. Biol. Chem. 1989;53:1597–1602.10.1271/bbb1961.53.1597
  • Adachi S, Hashimoto K, Matsuno R, Nakanishi K, Kamikubo T. Pulse response in an immobilized-enzyme column: theoretical method for predicting elution curves. Biotechnol. Bioeng. 1980;22:779–797.10.1002/(ISSN)1097-0290
  • Adachi S, Hashimoto K, Miyai K, Kurome H, Matsuno R, Kamikubo T. Pulse response in an immobilized-enzyme column: elution profiles in reversible and consecutive reactions. Biotechnol. Bioeng. 1981;23:1961–1976.10.1002/(ISSN)1097-0290
  • Adachi S, Tanabe S, Hashimoto K. Determination of pyruvate, L-lactate, and glutamic pyruvic transaminase by using an immobilized-lactate dehydrogenase column. Biotechnol. Bioeng. 1984;26:635–639.10.1002/(ISSN)1097-0290
  • Nakanishi K, Adachi S, Yamamoto S, Matsuno R, Tanaka A, Kamikubo T. Fundamental studies on immobilized enzymes. II. Diffusion of saccharides and amino acids in cross-linked polymers. Agric. Biol. Chem. 1977;41:2455–2462.10.1271/bbb1961.41.2455
  • Hashimoto K, Adachi S, Shirai Y, Horie M. Effect of the content of divinylbenzene in ion-exchange resins on the chromatographic separation of α-cyclodextrin and glucose. J. Chromatogr. 1988;448:241–248.10.1016/S0021-9673(01)84586-6
  • Adachi S, Watanabe T, Kohashi M. Effects of the divinylbenzene content and ionic form of cation-exchange resin on the chromatographic separation of maltooligosaccharides. Agric. Biol. Chem. 1989;53:3193–3201.10.1271/bbb1961.53.3193
  • Adachi S, Matsuno R. Apparent distribution coefficients of glucose and fructose onto cation-exchange resin in calcium-ion form with different divinylbenzene contents. Food Sci. Technol. Res. 2000;6:330–334.10.3136/fstr.6.330
  • Adachi S, Matsuno R. Apparent distribution coefficients of glucose and fructose to cation-exchange resins in some ionic forms. J. Appl. Glycosci. 1999;46:9–14.10.5458/jag.46.9
  • Adachi S, Mizuno T, Matsuno R. Temperature dependence of the distribution coefficient of maltooligosaccharides on cation-exchange resin in Na+ form. Biosci. Biotech. Biochem. 1996;60:338–340.10.1271/bbb.60.338
  • Adachi S, Mizuno T, Matsuno R. Concentration dependence of the distribution coefficient of maltooligosaccharides on a cation-exchange resin. J. Chromatogr. A. 1995;708:177–183.10.1016/0021-9673(95)00405-C
  • Adachi S, Matsuno R. Effect of eluent composition on the distribution coefficient of saccharides onto a cation-exchange resin in sodium-ion form. Biosci. Biotech. Biochem. 1997;61:1296–1301.10.1271/bbb.61.1296
  • Adachi S, Mizuno T, Matsuno R. Thermogravimetric measurement of the distribution coefficients of maltooligosaccharides upon a cation-exchange resin. Food Sci. Technol., Intl. 1995;1:34–37.10.3136/fsti9596t9798.1.34
  • Adachi S, Watanabe T, Kohashi M. Role of swelling pressure on the distribution coefficient of maltooligosaccharide in a cation-exchange resin. Agric. Biol. Chem. 1989;53:3203–3208.10.1271/bbb1961.53.3203
  • Adachi S, Yoshino T, Matsuno R. Estimation of the binding constant of a saccharide to sodium-ion using cation-exchange resins with different divinylbenzene contents. J. Chem. Eng. Jpn. 1999;32:678–683.10.1252/jcej.32.678
  • Kikuchi S, Ochi S, Adachi S. Simultaneous estimation of the binding constant of saccharide to sodium ion and the swelling pressure of cation-exchange resin. Food Sci. Technol. Res. 2010;16:531–536.10.3136/fstr.16.531
  • Adachi S, Matsuno R. Estimation of the binding constants of hexoses to the counter-ion of a cation-exchange resin based on their apparent distribution coefficients to the resin. Jpn. J. Food Eng. 2000;1:45–49.
  • Maeda A, Adachi S, Matsuno R. Chromatographic separation of 3-ketoglucose and glucose or 3-ketocellobiose and cellobiose using a cation-exchange resin in potassium-ion form. Biochem. Eng. J. 2003;13:15–20.10.1016/S1369-703X(02)00081-5
  • Maeda A, Adachi S, Matsuno R. Estimation of the binding constant of 3-ketocellobiose to a cation from the apparent distribution coefficient onto cation-exchange resin in the ionic form. Jpn. J. Food Eng. 2003;4:19–23.
  • Adachi S, Watanabe T, Hashimoto K. Distribution and dispersion properties in gel chromatographic separation of maltooligosaccharides with hydrophilic vinyl polymer gel. Denpun Kagaku. 1989;36:21–24.
  • Aimoto U, Kobayashi T, Adachi S. Temperature dependence of distribution behavior of saccharides on hydrophobic resin. Jpn. J. Food Eng. 2011;12:165–168.
  • Mori M, Adachi S. Temperature dependence of distribution coefficients of caffeine and vanillin on hydrophobic resin in an aqueous system. Jpn. J. Food Eng. 2006;7:141–145.
  • Kikuchi S, Kobayashi T, Adachi S. Temperature dependences of the distribution coefficients of hydrophobic solutes onto porous styrene divinylbenzene resin for the eluent with a low methanol content. J. Biosci. Bioeng. 2008;106:208–210.10.1263/jbb.106.208
  • Kikuchi S, Kobayashi T, Adachi S. Dependences of the distribution coefficients of hydrophobic solutes on porous methyl methacrylate resin on the temperature and methanol content of the eluent. Food Sci. Technol. Res. 2008;14:144–147.10.3136/fstr.14.144
  • Adachi S, Panintrarux C, Araki Y, Kimura Y, Matsuno R. Separation of alkyl-β-D-glucosides and n-alcohols by using a porous trimethylolpropane trimethacrylate homopolymer gel. Biosci. Biotechnol. Biochem. 1994;58:1558–1563.10.1271/bbb.58.1558
  • Adachi S, Panintrarux C, Matsuno R. Methods for estimating the parameters of nonlinear adsorption isotherms of langmuir and freundlich types from a response curve of pulse input of an adsorbate. Biosci. Biotechnol. Biochem. 1997;61:1626–1633.10.1271/bbb.61.1626
  • Adachi S, Kimura Y, Murakami K, Matsuno R, Yokogoshi H. Separation of peptide groups with definite characteristics from enzymatic protein hydrolysate. Agric. Biol. Chem. 1991;55:925–932.10.1271/bbb1961.55.925
  • Adachi S, Yamanaka T, Hayashi S, Kimura Y, Matsuno R, Yokogoshi H. Preparation of peptide mixture with high Fischer ratio from protein hydrolysate by adsorption on activated carbon. Bioseparation. 1993;3:227–232.
  • Adachi S, Yamanaka T, Matsuno R. Adsorption of dipeptides on activated carbon. Food Sci. Technol., Int. 1998;4:269–273.10.3136/fsti9596t9798.4.269
  • Adachi S, Ishiguro T, Matsuno R. Autoxidation kinetics for fatty acids and their esters. J. Am. Oil Chem. Soc. 1995;72:547–551.10.1007/BF02638855
  • Özilgen S, Özilgen M. Kinetic model of lipid oxidation in foods. J. Food Sci. 1990;55(498–501):536.
  • Minemoto Y, Ishido E, Adachi S, Matsuno R. Autoxidation kinetics for polyunsaturated acylglycerols. Food Sci. Technol. Res. 1999;5:104–107.10.3136/fstr.5.104
  • Minemoto Y, Adachi S, Shimada Y, Nagao T, Iwata T, Yamauchi-Sato Y, Yamamoto T, Kometani T, Matsuno R. Oxidation kinetics for cis-9, trans-11 and trans-10, cis-12 isomers of CLA. J. Am. Oil Chem. Soc. 2003;80:675–678.10.1007/s11746-003-0757-2
  • Adachi S, Ishiguro T, Matsuno R. Thermal analysis of autoxidation of ethyl esters of n-3 and n-6 fatty acids. Food Sci. Technol., Intl. 1995;1:1–4.10.3136/fsti9596t9798.1.1
  • Ishido E, Minemoto Y, Adachi S, Matsuno R. Oxidation of linoleic acid and methyl linoleate mixed with saturated fatty acid or its methyl ester. LWT-Food Sci. Technol. 2001;34:234–238.10.1006/fstl.2001.0755
  • Ma T, Takahashi T, Kobayashi T, Adachi S. Oxidation of methyl linoleate mixed with methyl octanoate, laurate or palmitate. Jpn. J. Food Eng. 2012;13:25–29.
  • Ishido E, Adachi S, Minemoto Y, Matsuno R. Kinetic expression for the oxidation of linoleic and arachidonic acid esters in their mixed system. Biosci. Biotechnol. Biochem. 2002;66:73–77.10.1271/bbb.66.73
  • Ishido E, Minemoto Y, Adachi S, Matsuno R. Oxidation of polyunsaturated acylglycerol mixed with saturated or unsaturated acylglycerol. Food Sci. Technol. Res. 2002;8:353–356.10.3136/fstr.8.353
  • Sakuramoto Y, Shima M, Adachi S. Autoxidation of mono-, di- and trilinoleoyl glycerols at different concentrations. Biosci. Biotechnol. Biochem. 2007;71:803–806.10.1271/bbb.60572
  • Minemoto Y, Kometani T, Piao J, Adachi S. Oxidation of oleoyl residue of its esters with ethylene glycol, glycerol and erythritol. LWT-Food Sci. Technol. 2006;39:1–5.10.1016/j.lwt.2004.11.008
  • Watanabe Y, Ishido E, Fang X, Adachi S, Matsuno R. Oxidation kinetics of linoleic acid in the presence of saturated acyl l-ascorbate. J. Am. Oil Chem. Soc. 2005;82:389–392.10.1007/s11746-005-1082-5
  • Fang X, Shima M, Kadota M, Tsuno T, Adachi S. Suppressive effect of alkyl ferulate on the oxidation of linoleic acid. Biosci. Biotechnol. Biochem. 2006;70:457–461.10.1271/bbb.70.457
  • Imai H, Maeda T, Shima M, Adachi S. Oxidation of methyl linoleate in O/W micro- and nanoemulsion systems. J. Am. Oil Chem. Soc. 2008;85:809–815.10.1007/s11746-008-1257-3
  • Ma T, Kobayashi T, Adachi S. Effect of droplet size on autoxidation rates of methyl linoleate and α-linolenate in an oil-in-water emulsion. J. Oleo Sci. 2013;62:1003–1008.10.5650/jos.62.1003
  • Kikuchi K, Yamamoto S, Shiga H, Yoshii H, Adachi S. Effect of reducing oil droplet size on lipid oxidation in an oil-in-water emulsion. Jpn. J. Food Eng. 2014;15:43–47.
  • Watanabe Y, Nakanishi H, Goto N, Otsuka K, Kimura T, Adachi S. Antioxidative properties of ascorbic acid and acyl ascorbates in ML/W emulsion. J. Am. Oil Chem. Soc. 2010;87:1475–1480.10.1007/s11746-010-1632-8
  • Watanabe Y, Suzuki T, Nakanishi H, Sakuragochi A, Adachi S. Effect of ascorbic acid or acyl ascorbate on the stability of catechin in O/W emulsion. J. Am. Oil Chem. Soc. 2012;89:269–274.10.1007/s11746-011-1913-x
  • Imagi J, Muraya K, Yamashita D, Adachi S, Matsuno R. Retarded oxidation of liquid lipids entrapped in matrixes of saccharides or proteins. Biosci. Biotech. Biochem. 1992;56:1236–1240.10.1271/bbb.56.1236
  • Kikuchi S, Fang X, Shima M, Katano K, Fukami H, Adachi S. Oxidation of arachidonoyl glycerols encapsulated with saccharides. Food Sci. Technol. Res. 2006;12:247–251.10.3136/fstr.12.247
  • Minemoto Y, Fang X, Hakamata K, Watanabe Y, Adachi S, Kometani T, Matsuno R. Oxidation of linoleic acid encapsulated with soluble soybean polysaccharide by spray-drying. Biosci. Biotechnol. Biochem. 2002;66:1829–1834.10.1271/bbb.66.1829
  • Fang X, Watanabe Y, Adachi S, Matsumura Y, Mori T, Maeda H, Nakamura A, Matsuno R. Microencapsulation of linoleic acid with low- and high-molecular-mass components of soluble soybean polysaccharide and its oxidation process. Biosci. Biotechnol. Biochem. 2003;67:1864–1869.10.1271/bbb.67.1864
  • Minemoto Y, Adachi S, Matsuno R. Comparison of oxidation of methyl linoleate encapsulated with gum arabic by hot-air-drying and freeze-drying. J. Agric. Food Chem. 1997;45:4530–4534.10.1021/jf970465h
  • Minemoto Y, Adachi S, Matsuno R. Effect of relative humidity during storage on the autoxidation of linoleic acid encapsulated with a polysaccharide by hot-air-drying and freeze-drying. Food Sci. Technol. Res. 2001;7:91–93.10.3136/fstr.7.91
  • Fang X, Shima M, Adachi S. Effects of drying conditions on the oxidation of linoleic acid encapsulated with gum Arabic by spray-drying. Food Sci. Technol. Res. 2005;11:380–384.10.3136/fstr.11.380
  • Adachi S, Muraya K, Ishiguro T, Matsuno R. Apparent diffusion coefficient of oxygen through dehydrated protein or saccharide films. J. Pack. Sci. Technol. 1994;3:93–101.
  • Ishido E, Minemoto Y, Adachi S, Matsuno R. Heterogeneity during autoxidation of linoleic acid encapsulated with a polysaccharide. J. Food Eng. 2003;59:237–243.10.1016/S0260-8774(02)00463-6
  • Ishido E, Hakamata K, Minemoto Y, Adachi S, Matsuno R. Oxidation process of linoleic acid encapsulated with a polysaccharide by spray-drying. Food Sci. Technol. Res. 2002;8:85–88.10.3136/fstr.8.85
  • Ishiguro T, Adachi S, Matsuno R. Thermogravimetric analysis of cyclodextrin-fatty acid complex formation and its use for predicting suppressed autoxidation of fatty acids. Biosci. Biotech. Biochem. 1995;59:51–54.10.1271/bbb.59.51
  • Minemoto Y, Adachi S, Matsuno R. Autoxidation of linoleic acid encapsulated with polysaccharides of differing weight ratio. Biosci. Biotech. Biochem. 1999;63:866–869.10.1271/bbb.63.866
  • Minemoto Y, Hakamata K, Adachi S, Matsuno R. Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying. J. Microencapsulation. 2002;19:181–189.10.1080/02652040110065468
  • Nakazawa R, Shima M, Adachi S. Effect of oil-droplet size on the oxidation of microencapsulated methyl linoleate. J. Oleo Sci. 2008;57:225–232.10.5650/jos.57.225
  • Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P. Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J. Food Sci. 2003;68:2256–2262.10.1111/jfds.2003.68.issue-7
  • Kikuchi K, Yamamoto S, Shiga H, Yoshii H, Adachi S. Surface oil content of microcapsules containing various oil fractions and oil-droplet sizes. Jpn. J. Food Eng. 2013;14:169–174.
  • Kikuchi K, Yamamoto S, Shiga H, Yoshii H, Adachi S. Surface-oil content of microcapsules with different oil droplet-to-microcapsule size ratio. Jpn. J. Food Eng. 2014;15:191–193.
  • Adachi S, Iwase H, Matsuno R. Relationship between the amount of lipid exposed at the surface of the lipid emulsions encapsulated by a polymer and the critical surface tension of the dehydrated polymer film. Nippon Shokuhin Kagaku Kogaku Kaishi. 1995;42:137–139.10.3136/nskkk.42.137
  • Minemoto Y, Adachi S, Matsuno R. Solvent-extraction processes of linoleic acid encapsulated with gum arabic, pullulan or maltodextrin at different weight ratios. Food Sci. Technol. Res. 1999;5:289–293.10.3136/fstr.5.289
  • Minemoto Y, Adachi S, Matsuno R. Autoxidation and solvent-extraction processes of linoleic acid encapsulated with a polysaccharide by freeze-drying. Food. Sci. Technol. Res. 2000;6:221–224.10.3136/fstr.6.221
  • Watanabe Y, Fang X, Minemoto Y, Adachi S, Matsuno R. Suppressive effect of saturated acyl L-ascorbate on the oxidation of linoleic acid encapsulated with maltodextrin or gum arabic by spray-drying. J. Agric. Food Chem. 2002;50:3984–3987.10.1021/jf011656u
  • Watanabe Y, Fang X, Adachi S, Fukami H, Matsuno R. Oxidation of 6-O-arachidonoyl l-ascorbate microencapsulated with a polysaccharide by spray-drying. LWT-Food Sci. Technol. 2004;37:395–400.10.1016/j.lwt.2003.10.003
  • Fang X, Kikuchi S, Shima M, Kadata M, Tsuno T, Adachi S. Suppressive effect of alkyl ferulate on the oxidation of microencapsulated linoleic acid. Eur. J. Lipid Sci. Technol. 2006;108:97–102.10.1002/(ISSN)1438-9312
  • Watanabe Y, Yamashita T, Yamashita M, Adachi S. Suppressive effect of α-tocopherol complexing with β-cyclodextrin for the oxidation of methyl linoleate. Food Sci. Technol. Res. 2009;15:479–482.10.3136/fstr.15.479
  • Watanabe Y, Fang X, Adachi S. Suppressive effect of decanoyl ascorbate on the oxidation of fish oil encapsulated with a polysaccharide. Food Sci. Technol. Res. 2009;15:569–574.10.3136/fstr.15.569
  • Musashino K, Hasegawa Y, Imaoka H, Adachi S, Matsuno R. Preparation of W/O/W multiple emulsions with polymers in the outer aqueous phase. Food Sci. Technol. Res. 2001;7:78–83.10.3136/fstr.7.78
  • Hasegawa Y, Imaoka H, Adachi S, Matsuno R. Preparation of W/O/W emulsions at low emulsifier concentrations. Food Sci. Technol. Res. 2001;7:300–302.10.3136/fstr.7.300
  • Adachi S, Imaoka H, Hasegawa Y, Matsuno R. Preparation of W/O/W type microcapsules by a single-droplet-drying method and change in encapsulation efficiency of a hydrophilic substance during storage. Biosci. Biotech. Biochem. 2003;67:1376–1381.10.1271/bbb.67.1376
  • Adachi S, Imaoka H, Ashida H, Maeda H, Matsuno R. Preparation of microcapsules of W/O/W emulsions containing a polysaccharide in the outer aqueous phase by spray-drying. Eur. J. Lipid Sci. Technol. 2004;106:225–231.10.1002/(ISSN)1438-9312
  • Adachi S, Imagi J, Matsuno R. Model for estimation of the stability of emulsions in a cream layer. Biosci. Biotech. Biochem. 1992;56:495–498.10.1271/bbb.56.495
  • Adachi S, Nagao K, Asawathamakittee S, Matsuno R. Effect of polymer additives on the stability of O/W emulsions. Food Sci. Technol., Intl. 1996;2:203–208.10.3136/fsti9596t9798.2.203
  • Bandura AV, Lvov SN. The ionization constant of water over wide range of temperature and density. J. Phys. Chem. Ref. Data. 2006;35:15–30.10.1063/1.1928231
  • Oomori T, Khajavi S, Kimura Y, Adachi S, Matsuno R. Hydrolysis of disaccharides containing glucose residue in subcritical water. Biochem. Eng. J. 2004;18:143–147.10.1016/j.bej.2003.08.002
  • Haghighat Khajavi S, Kimura Y, Oomori T, Matsuno R, Adachi R. Decomposition kinetics of maltose in subcritical water. Biosci. Biotechnol. Biochem. 2004;68:91–95.10.1271/bbb.68.91
  • Haghighat Khajavi S, Kimura Y, Oomori T, Matsuno R, Adachi R. Kinetics on sucrose decomposition in subcritical water. LWT-Food Sci. Technol. 2005;38:297–302.10.1016/j.lwt.2004.06.005
  • Haghighat Khajavi S, Kimura Y, Oomori T, Matsuno R, Adachi R. Degradation kinetics of monosaccharides in subcritical water. J. Food Eng. 2005;68:309–313.10.1016/j.jfoodeng.2004.06.004
  • Usuki C, Kimura Y, Adachi S. Degradation of pentaoses and hexauronic acids in subcritical water. Chem. Eng. Technol. 2008;31:133–137.10.1002/(ISSN)1521-4125
  • Ohshima J, Haghighat Khajavi S, Kimura Y, Adachi S. Effects of sodium chloride on the degradation of hexoses and the hydrolysis of sucrose in subcritical water. Eur. Food Res. Technol. 2008;227:799–803.10.1007/s00217-007-0788-4
  • Haghighat Khajavi S, Ota S, Nakazawa R, Kimura Y, Adachi S. Hydrolysis kinetics of trisaccharides consisting of glucose, galactose and fructose residues in subcritical water. Biotechnol. Prog. 2006;22:1321–1326.
  • Haghighat Khajavi S, Ota S, Kimura Y, Adachi S. Kinetics of maltooligosaccharide hydrolysis in subcritical water. J. Agric. Food Chem. 2006;54:3663–3667.10.1021/jf060117s
  • Wang R, Kobayashi T, Adachi S. Degradation kinetics of D-galacturonic aid and sodium D-galacturonate in subcritical water. J. Appl. Glycosci. 2009;56:181–184.10.5458/jag.56.181
  • Wang R, Neoh TL, Kobayashi T, Miyake Y, Hosoda A, Taniguchi H, Adachi S. Degradation kinetics of glucuronic acid in subcritical water. Biosci. Biotechnol. Biochem. 2010;74:601–605.10.1271/bbb.90818
  • Wang R, Neoh TL, Kobayashi T, Adachi S. Antioxidative ability of degradation products of glucuronic and galacturonic acids from subcritical water treatment. Chem. Eng. Technol. 2011;34:1514–1520.10.1002/ceat.v34.9
  • Wang R, Kobayashi T, Adachi S. Degradation kinetics of N-acetyl-D-glucosamine and D-glucosamine in subcritical water. Food Sci. Technol. Res. 2011;17:273–278.10.3136/fstr.17.273
  • Kobayashi T, Takase K, Adachi S. Degradation kinetics of branched-chain amino acids in subcritical water. Biosci. Biotechnol. Biochem. 2010;74:649–651.10.1271/bbb.90554
  • Kobayashi T, Fujita R, Chaiyapat I, Mori H, Hosoda A, Taniguchi H, Adachi S. Kinetic analysis for the degradation of glycyl-L-leucine and L-leucyl-glycine in subcritical water. Biosci. Biotechnol. Biochem. 2012;76:125–128.10.1271/bbb.110590
  • Khuwijitjaru P, Fujii T, Adachi S, Kimura Y, Matsuno R. Kinetics on the hydrolysis of fatty acid esters in subcritical water. Chem. Eng. J. 2004;99:1–4.10.1016/j.cej.2003.08.002
  • Fujii T, Khuwijitjaru P, Kimura Y, Adachi S. Decomposition kinetics of monoacyl glycerol and fatty acid in subcritical water under temperature-programmed heating conditions. Food Chem. 2006;94:341–347.10.1016/j.foodchem.2004.11.021
  • Khuwijitjaru P, Plernjit J, Samuhaseneetoo S, Pongsawatmanit R, Adachi S. Degradation kinetics of some phenolic compounds in subcritical water and radical scavenging activity of their degradation products. Can. J. Chem. Eng. 2014;92:810–815.10.1002/cjce.v92.5
  • Asano T, Maeda A, Kimura Y, Takahashi T, Nakamura A, Maeda H, Adachi S. Condensation reaction between angiotensin II and dicarboxylic acid in water at high temperature without any catalytic agent additive. Biotechnol. Progr. 2005;21:1169–1174.
  • Usuki C, Kimura Y, Adachi S. Isomerization of hexoses in subcritical water. Food Sci. Technol. Res. 2007;13:205–209.10.3136/fstr.13.205
  • Usuki C, Kimura Y, Adachi S. Conversion of linoleic acid to its conjugated isomers in subcritical water. Jpn. J. Food Eng. 2006;7:147–150.
  • Gao DM, Kobayashi T, Adachi S. Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols. Biosci. Biotechnol. Biochem. in press. doi: 10.1080/09168451.2014.973366.
  • Wiboonsirikul J, Hata S, Kimura Y, Tsuno T, Adachi S. Production of functional substances from black rice bran by its treatment in subcritical water. LWT-Food Sci. Technol. 2007;40:1732–1740.10.1016/j.lwt.2007.01.003
  • Wiboonsirikul J, Kimura Y, Kadota M, Morita H, Tsuno T, Adachi S. Properties of extracts from defatted rice bran by its subcritical water treatment. J. Agric. Food Chem. 2007;55:8759–8765.10.1021/jf072041l
  • Wiboonsirikul J, Khuwijitjaru P, Kimura Y, Morita H, Tsuno T, Adachi S. Production optimization of the extract with high phenolic content and radical scavenging activity from defatted rice bran by subcritical water treatment. Jpn. J. Food. Eng. 2007;8:311–315.
  • Khuwijitjaru P, Nualchan P, Adachi S. Foaming and emulsifying properties of rice bran extracts obtained by subcritical water treatment. Silpakorn U. Sci. Technol. J. 2007;1:7–12.
  • Hata S, Wiboonsirikul J, Maeda A, Kimura Y, Adachi S. Extraction of defatted rice bran by subcritical water treatment. Biochem. Eng. J. 2008;40:44–53.10.1016/j.bej.2007.11.016
  • Wiboonsirikul J, Kimura Y, Kanaya Y, Tsuno T, Adachi S. Production and characterization of functional substances from a by-product of rice bran oil and protein production by a compressed hot water treatment. Biosci. Biotechnol. Biochem. 2008;72:384–392.10.1271/bbb.70464
  • Murayama Y, Neoh TL, Kobayashi T, Adachi S. Production of emulsifying and antioxidative substances from defatted rice bran by two-step subcritical water treatment. Jpn. J. Food Eng. 2009;10:107–114.
  • Jeyashoke N, Chiou TY, Neoh TL, Murayama Y, Kobayashi T, Adachi S. Effect of temperature-rising rate on the antioxidative ability of the defatted rice bran extract obtained by subcritical water treatment. Food Sci. Technol. Res. 2010;16:197–200.10.3136/fstr.16.197
  • Viriya-empikul N, Wiboonsirikul J, Kobayashi T, Adachi S. Effects of temperature and flow rate on subcritical-water extraction from defatted rice bran. Food Sci. Technol. Res. 2012;18:333–340.10.3136/fstr.18.333
  • Sha Y, Chiou TY, Kobayashi T, Adachi S. Evaluation of antioxidative activity for extracts from defatted rice bran using 5-axe cobweb chart. Food Sci. Technol. Res. 2012;18:789–793.10.3136/fstr.18.789
  • Wiboonsirikul J, Sakai Y, Hosoda A, Morita H, Kimura Y, Taniguchi H, Tsuno T, Adachi S. Mutagenicity of the extract from defatted rice bran by subcritical water treatment. Jpn. J. Food Eng. 2008;9:75–78.
  • Chiou TY, Neoh TL, Kobayashi T, Adachi S. Antioxidative ability of defatted rice bran extract obtained by subcritical water extract in bulk oil and aqueous dispersion systems. Jpn. J. Food Eng. 2011;12:147–154.
  • Wiboonsirikul J, Nakazawa R, Kobayashi T, Morita H, Tsuno T, Adachi S. Suppression of the oxidation of methyl linoleate encapsulated with the extract from defatted rice bran by a compressed hot water treatment. Eur. Food Res. Technol. 2008;228:109–114.10.1007/s00217-008-0912-0
  • Khuwijitjaru P, Wanpen C, Mala T, Ariyakriangkrai M, Adachi S. Effect of subcritical water pretreatment on enzymatic digestibility of rice straw, corn stover and sugar cane bagasse. KKU Res. J. 2009;14:1084–1090 (in Thai).
  • Kataoka M, Wiboonsirikul J, Kimura Y, Adachi S. Properties of extracts from wheat bran by subcritical water treatment. Food Sci. Technol. Res. 2008;14:553–556.10.3136/fstr.14.553
  • Khuwijitjaru P, Anantanasuwong S, Adachi S. Emulsifying and foaming properties of defatted soy meal extracts obtained by subcritical water treatment. Intl. J. Food Prop. 2010;14:9–16.
  • Wiboonsirikul J, Mori M, Khuwijitjaru P, Adachi S. Properties of extract from okara by its subcritical water treatment. Intl. J. Food Prop. 2013;16:974–982.10.1080/10942912.2011.573119
  • Murayama Y, Kobayashi T, Adachi S. Properties of extracts from soy sauce cake using subcritical water treatment. Jpn. J. Food Eng. 2010;11:67–71.
  • Murayama Y, Wiboonsirikul J, Khuwijitjaru P, Kobayashi T, Adachi S. Antioxidative characteristics of extracts from cereal residues by their subcritical water treatment. J. Oleo Sci. 2012;61:465–468.10.5650/jos.61.465
  • Khuwijitjaru P, Watsanit K, Adachi S. Carbohydrate content and composition of product from subcritical water treatment of coconut meal. J. Ind. Eng. Chem. 2012;18:225–229.10.1016/j.jiec.2011.11.010
  • Khuwijitjaru P, Chalooddong K, Adachi S. Phenolic content and radical scavenging capacity of kaffir lime fruit peel extracts obtained by pressurized hot water extraction. Food Sci. Technol. Res. 2008;14:1–4.10.3136/fstr.14.1
  • Khuwijitjaru P, Sayputikasikorn N, Samuhasaneetoo S, Penroj P, Siriwongwilaichat P, Adachi S. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum). J. Oleo Sci. 2012;61:349–355.10.5650/jos.61.349
  • Chiou TY, Neoh TL, Kobayashi T, Adachi S. Properties of extract obtained from defatted rice bran by extraction with aqueous ethanol under subcritical conditions. Food Sci. Technol. Res. 2012;18:37–45.10.3136/fstr.18.37
  • Chiou TY, Neoh TL, Kobayashi T, Adachi S. Extraction of defatted rice bran with subcritical aqueous acetone. Biosci. Biotechnol. Biochem. 2012;76:1535–1539.10.1271/bbb.120286
  • Chiou TY, Ogino A, Kobayashi T, Adachi S. Characteristics and antioxidative ability of defatted rice bran extracts obtained using several extractants under subcritical conditions. J. Oleo Sci. 2013;62:1–8.10.5650/jos.62.1
  • Chiou TY, Kobayashi T, Adachi S. Characteristics and antioxidative activity of the acetone-soluble and insoluble fractions of the defatted rice bran extract obtained using aqueous organic solvent under subcritical conditions. Biosci. Biotechnol. Biochem. 2013;77:624–630.10.1271/bbb.120858
  • Tangkhavanich B, Kobayashi T, Adachi S. Properties of rice straw extract after subcritical water treatment. Biosci. Biotechnol. Biochem. 2012;76:1146–1149.
  • Tangkhavanich B, Oishi Y, Kobayashi T, Adachi S. Properties of the rice stem extracts obtained by subcritical water/ethanol treatment. Food Sci. Technol. Res. 2013;19:547–552.10.3136/fstr.19.547
  • Tangkhavanich B, Kobayashi T, Adachi S. Effects of treatment time during subcritical water treatment and its re-treatment on the properties of rice stem extract. Jpn. J. Food Eng. 2013;14:107–112.
  • Tangkhavanich B, Kobayashi T, Adachi S. Properties of rice stem extracts obtained using subcritical fluids. Biosci. Biotechnol. Biochem. 2013;77:2112–2116.10.1271/bbb.130485
  • Khuwijitjaru P, Adachi S, Matsuno R. Solubility of saturated fatty acids in water at elevated temperatures. Biosci. Biotechnol. Biochem. 2002;66:1723–1726.10.1271/bbb.66.1723
  • Khuwijitjaru P, Kimura Y, Matsuno R, Adachi S. Solubility of oleic and linoleic acids in subcritical water. Food Sci. Technol. Res. 2004;10:261–263.10.3136/fstr.10.261
  • Khuwijitjaru P, Kimura Y, Matsuno R, Adachi S. Preparation of finely dispersed O/W emulsion from fatty acid solubilized in subcritical water. J. Colloid Interface Sci. 2004;278:192–197.10.1016/j.jcis.2004.05.032
  • Katagi S, Kimura Y, Adachi S. Continuous preparation of O/W nano-emulsion by the treatment of a coarse emulsion under subcritical water conditions. LWT-Food Sci. Technol. 2007;40:1376–1380.10.1016/j.lwt.2006.09.004
  • Ogawa T, Kobayashi T, Adachi S. Prediction of pasta drying process based on a thermogravimetric analysis. J. Food Eng. 2012;111:129–134.10.1016/j.jfoodeng.2012.01.011
  • Ogawa T, Koizumi S, Adachi S. Thermal analysis of drying process of durum wheat dough under the programmed temperature-rising conditions. Food Biopro. Process. 2014;92:9–13.10.1016/j.fbp.2013.07.001
  • Mizuno N, Ogawa T, Adachi S. Shrinkage and tensile stress of sheet-like and cylindrical pastas with various moisture contents. Food Biosci. 2013;2:10–14.10.1016/j.fbio.2013.03.007
  • Chuma A, Ogawa T, Kobayashi T, Adachi S. Moisture sorption isotherm of durum wheat flour. Food Sci. Technol. Res. 2012;18:617–622.10.3136/fstr.18.617
  • Hasegawa A, Ogawa T, Adachi S. Dilatometric measurement of partial molar volume of water sorbed onto durum wheat flour. Biosci. Biotechnol. Biochem. 2013;77:1565–1568.10.1271/bbb.130273
  • Ogawa T, Kobayashi T, Adachi S. Water sorption kinetics of spaghetti at different temperatures. Food Biopro. Process. 2011;89:135–141.10.1016/j.fbp.2010.04.004
  • Aimoto U, Ogawa T, Adachi S. Water sorption kinetics of spaghetti prepared under different drying conditions. Food Sci. Technol. Res. 2013;19:17–22.10.3136/fstr.19.17
  • Ogawa T, Adachi S. Effect of salts on water sorption kinetics of dried pasta. Biosci. Biotechnol. Biochem. 2013;77:249–252.
  • Yoshino M, Ogawa T, Adachi S. Properties and water sorption characteristics of spaghetti prepared using various dies. J. Food Sci. 2013;78:E520–E525.10.1111/jfds.2013.78.issue-4
  • Ogawa T, Adachi S. Measurement of moisture profiles in pasta during rehydration based on image processing. Food Bioproc. Technol. 2014;7:1465–1471.10.1007/s11947-013-1156-y
  • Ogawa T, Hasegawa A, Adachi S. Effects of relaxation of gluten network on rehydration kinetics of pasta. Biosci. Biotechnol. Biochem. in press. 2014;78:1930–1934.
  • Ogawa T, Adachi S. Effects of drying conditions on moisture distribution in rehydrated spaghetti. Biosci. Biotechnol. Biochem. 2014;78:1412–1414.10.1080/09168451.2014.918493
  • Hasegawa A, Ogawa T, Adachi S. Estimation of the gelatinization temperature of noodles from their water sorption curves under temperature-programmed heating conditions. Biosci. Biotechnol. Biochem. 2012;76:2156–2158.10.1271/bbb.120522

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.