912
Views
9
CrossRef citations to date
0
Altmetric
Award Review

Frontier studies on highly selective bio-regulators useful for environmentally benign agricultural productionFootnote

Pages 877-887 | Received 01 Dec 2014, Accepted 26 Jan 2015, Published online: 17 Mar 2015

References

  • Harker KN, O’Donovan JT. Recent weed control, weed management, and integrated weed management. Weed Technol. 2013;27:1–11.10.1614/WT-D-12-00109.1
  • Mobley HLT, Hausinger RP. Microbial urease: significance, regulation, and molecular characterization. Microbial. Rev. 1989;53:85–108.
  • Hayashi H, Takiuchi K, Murao S, Arai M. Structure and insecticidal activity of new indole alkaloids, okaramines A and B, from Penicillium simplicissimum AK-40. Agric. Biol. Chem. 1989;53:461–469.10.1271/bbb1961.53.461
  • Hayashi H, Fujiwara T, Murao S, Arai M. Okaramine C, a new insecticidal indole alkaloid from Penicillium simplicissimum. Agric. Biol. Chem. 1991;55:3143–3145.10.1271/bbb1961.55.3143
  • Hayashi H, Asabu Y, Murao S, Arai M. New okaramine congeners, okaramines D, E, and F, from Penicillium simplicissimum ATCC 90288. Biosci. Biotechnol. Biochem. 1995;59:246–250.10.1271/bbb.59.246
  • Hayashi H, Sakaguchi A. Okaramine G, a new okaramine congener from Penicillium simplicissimum ATCC 90288. Biosci. Biotechnol. Biochem. 1998;62:804–806.10.1271/bbb.62.804
  • Hayashi H, Furutsuka K, Shiono Y. Okaramines H and I, new okaramine congeners, from Aspergillus aculeatus. J. Nat. Prod. 1999;62:315–317.10.1021/np9802623
  • Shiono Y, Akiyama K, Hayashi H. New okaramine congeners, okamines J, K, L, M and related compounds, from Penicillium simplicissimum ATCC 90288. Biosci. Biotechnol. Biochem. 1999;63:1910–1920.10.1271/bbb.63.1910
  • Shiono Y, Akiyama K, Hayashi H. Okaramines N, O, P, Q and R, new okaramine congeners, from Penicillium simplicissimum ATCC 90288. Biosci. Biotechnol. Biochem. 2000;64:103–110.10.1271/bbb.64.103
  • Roe JM, Webster RAB, Ganesan A. Total synthesis of (+)-okaramine J featuring an exceptionally facile N-reverse-prenyl to C-prenyl aza-Claisen rearrangement. Org. Lett. 1994;5:2825–2827.10.1021/ol034822n
  • Baran PS, Guerrero CA, Corey EJ. Short, enantioselective total synthesis of okaramine N. J. Am. Chem. Soc. 2003;125:5628–5629.10.1021/ja034491+
  • Hewitt PR, Cleator E, Ley SV. A concise total synthesis of (+)-okaramine C. Org. Biomol. Chem. 2004;2:2415–2417.10.1039/b410180d
  • Iizuka T, Takiguchi S, Kumakura Y, Tsukioka N, Higuchi K, Kawasaki T. First total synthesis and stereochemical revision of okaramine M. Tetrahedron Lett. 2010;51:6003–6005.10.1016/j.tetlet.2010.09.026
  • Hayashi H, Matsumoto H, Akiyama K. New insecticidal compounds, communesins C, D and E, from Penicillium expansum Link MK-57. Biosci. Biotechnol., Biochem. 2004;68:753–756.10.1271/bbb.68.753
  • Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett. 1993;34:2355–2358.10.1016/S0040-4039(00)77612-X
  • Yang J, Wu H, Shen L, Qin Y. Total synthesis of (±)-communesin F. J. Am. Chem. Soc. 2007;129:13794–13795.10.1021/ja075705g
  • Zuo Z, Xie W, Ma D. Total synthesis and absolute stereochemical assignment of (−)-communesin F. J. Am. Chem. Soc. 2010;132:13226–13228.10.1021/ja106739g
  • Liu P, Seo JH, Weinreb SM. Total synthesis of the polycyclic fungal metabolite (±)-communesin F. Angew. Chem. Int. Ed. 2010;49:2000–2003.10.1002/anie.200906818
  • Belmar J, Funk RL. Total synthesis of (±)-communesin F via a cycloaddition with indol-2-one. J. Am. Chem. Soc. 2012;134:16941–16943.10.1021/ja307277w
  • Hayashi H, Oka Y, Kai K, Akiyama K. A New meroterpenoid, chrodrimanin C, from YO-2 of Talaromyces sp. Biosci. Biotechnol. Biochem. 2012;76:745–748.10.1271/bbb.110858
  • Nakajima M, Takahashi H, Furuya K, Sato S, Itoi K, Kagasaki T, Hara M. Japan patent 02221277, 1990 Sep.
  • Hayashi H, Oka Y, Kai K, Akiyama K. New chrodrimanin congeners, chrodrimanins D-H, from YO-2 of Talaromyces sp. Biosci. Biotechnol. Biochem. 2012;76:1765–1768.10.1271/bbb.120365
  • Yamazaki H, Ugaki N, Matsuda D, Tomoda H. Absolute stereochemistry of pentacecilides, new inhibitors of lipid droplet formation in mouse macrophages, produced by Penicillium cecidicola FKI-3765-1. J. Antibiot. 2010;63:315–318.10.1038/ja.2010.39
  • Hayashi H, Murao S, Arai M. Verruculogen, as a convulsive factor against silkworm, from Penicillium simplicissimum MF-24. Chem. Express. 1991;6:989–992.
  • Fayos J, Lokensgard D, Clardy J, Cole RJ, Kirksey JW. Structure of verruculogen, a tremor producing peroxide from Penicillium verruculosum. J. Am. Chem. Soc. 1974;96:6785–6787.10.1021/ja00828a054
  • Hayashi H, Asabu Y, Murao S, Nakayama M, Arai M. Penitrem A, as a convulsive factor against silkworm, from Penicillium simplicissimum AK-40. Chem. Express. 1993;8:177–180.
  • Hayashi H, Asabu Y, Murao S, Nakayama M, Arai M. A new congener of penitrems, 6-bromopenitrem E, from Penicillium simplicissimum AK-40. Chem. Express. 1993;8:233–236.
  • Wilson BJ, Wilson CH, Hayes AW. Tremorgenic toxin from Penicillium cyclopium grown on food materials. Nature. 1968;220:77–78.10.1038/220077b0
  • Norris PJ, Smith CCT, De Beleroche J, Bradford HF, Mantle PC, Thomas AJ, Penny RHC. Actions of tremorgenic fungal toxins on neurotransmitter release. J. Neurochem. 1980;34:33–42.10.1111/jnc.1980.34.issue-1
  • Fujita T, Makishima D, Akiyama K, Hayashi H. New convulsive compounds, brasiliamides A and B, from Penicillium brasilianum Batista JV-379. Biosci. Biotechnol. Biochem. 2002;66:1697–1705.10.1271/bbb.66.1697
  • Fujita T, Hayashi H. New brasiliamide congeners, brasiliamides C, D and E, from Penicillium brasilianum Batista JV-379. Biosci. Biotechnol. Biochem. 2004;68:820–826.10.1271/bbb.68.820
  • Chexal KK, Springer JP, Clardy J, Cole RJ, Kirksey JW, Dorner JW, Cutler HG, Strawter BJ. Austin, a novel polyisoprenoid mycotoxin from Aspergillus ustus. J. Am. Chem. Soc. 1976;98:6748–6750.10.1021/ja00437a081
  • Simpson TJ, Stenzel DJ, Bartlett AJ, O’Brien E, Holker JSE. Studies on fungal metabolites. Part 3. 13C N.m.r. spectral and structural studies on austin and new related meroterpenoids from Aspergillus ustus, Aspergillus variecolor, and Penicillium diversum. J. Chem. Soc. Perkin Trans. 1. 1982;2687–2692.10.1039/p19820002687
  • Hayashi H, Mukaihara M, Murao S, Arai M, Lee AY, Clardy J. Acetoxydehydroaustin, a new bioactive compound, and related compound neoaustin from Penicillium sp. MG-11. Biosci. Biotechnol. Biochem. 1994;58:334–338.10.1271/bbb.58.334
  • Rodríguez-Urra AB, Jiménez C, Nieto MI, Rodríguez J, Hayashi H, Ugalde U. Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem. Biol. 2012;7:599–606.10.1021/cb200455u
  • Hayashi H, Nishimoto Y, Nozaki H. Asperparaline A, a new paralytic alkaloid from Aspergillus japonicus JV-23. Tetrahedron Lett. 1997;38:5655–5658.10.1016/S0040-4039(97)01231-8
  • Hayashi H, Nishimoto Y, Akiyama K, Nozaki H. New paralytic alkaloids, asperparalines A, B and C, from Aspergillus japonicus JV-23. Biosci. Biotechnol. Biochem. 2000;64:111–115.10.1271/bbb.64.111
  • Adams LA, Gray CR, Williams RM. Concise synthesis of the core bicyclo[2.2.2]diazaoctane ring common to asperparaline, paraherquamide, and stephacidin alkaloids. Tetrahedron Lett. 2004;45:4489–4493.10.1016/j.tetlet.2004.04.054
  • Tanimori S, Sunami T, Fukubayashi K, Kirihata M. An efficient construction of bridged chiral tetracyclic indolidines, a core structure of asperparaline, via stereocontrolled catalytic Pauson–Khand reaction. Tetrahedron. 2005;61:2481–2492.10.1016/j.tet.2004.12.057
  • Gray CR, Sanz-Cervera JF, Silks LA, Williams RM. Studies on the biosynthesis of asperparaline A: origin of the spirosuccinimde ring system. J. Am. Chem. Soc. 2003;125:14692–14693.10.1021/ja037687i
  • Umagome K, Nagase K, Harimaya K, Nakayama F, Yaguchi T, Sato E, Hoshido S, Kamito N, Soneda T, Hachisu M. Japan patent 11021297, 1999.
  • Kai K, Yoshikawa H, Kuo YH, Akiyama K, Hayashi H. Determination of absolute structures of cyclic peptides, PF1171A and PF1171C, from unidentified ascomycete OK-128. Biosci. Biotechnol. Biochem. 2010;74:1309–1311.10.1271/bbb.100098
  • Kuo YH, Kai K, Akiyama K, Hayashi H. Novel bioactive peptides, PF1171F and PF1171G, from unidentified ascomycete OK-128. Tetrahedron Lett. 2012;53:429–431.10.1016/j.tetlet.2011.11.068
  • Masuda Y, Tanaka R, Kai K, Ganesan A, Doi T. Total synthesis and biological evaluation of PF1171A, C, F, and G, cyclic hexapeptides with insecticidal activity. J. Org. Chem. 2014;79:7844–7853.10.1021/jo500861k
  • Miki S, Kai K, Akiyama K, Hayashi H. Cyclopiamines produced by P. griseofulvum OK-17. The Annual Meeting of Kansai Branch of Japan Society for Bioscience, Biotechnology, and Agrochemistry; 2012 Sep; Kameoka.
  • Bond RF, Boeyens JCA, Holzapfel CW, Steyn PS. Cyclopiamines A and B, novel oxindole metabolites of Penicillium cyclopium westling. J. Chem. Soc., Perkin Trans. 1. 1979;1751–1761.10.1039/p19790001751
  • Furutani S, Nakatani Y, Miura Y, Ihara M, Kai K, Hayashi H, Matsuda K. GluCl a target of indole alkaloid okaramines: a 25 year enigma solved. Sci. Rep. 2014;4:6190.10.1038/srep06190
  • Ikeda T, Zhao X, Kono Y, Yeh JZ, Narahashi T. Fipronil modulation of glutamate-induced chloride currents in cockroach thoracic ganglion neurons. NeuroToxicology. 2003;24:807–815.10.1016/S0161-813X(03)00041-X
  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature. 1994;371:707–711.10.1038/371707a0
  • Hirata K, Kataoka S, Furutani S, Hayashi H, Matsuda K. A fungal metabolite asperparaline A strongly and selectively blocks insect nicotinic acetylcholine receptors: the first report on the mode of action. PLoS ONE. 2011;6:e18354.10.1371/journal.pone.0018354
  • Ascher P, Large WA, Rang HP. Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J. Physiol. 1979;295:139–170.10.1113/jphysiol.1979.sp012958
  • Kataoka S, Furutani S, Hirata K, Hayashi H, Matsuda K. Three austin family compounds from Penicillium brasilianum exhibit selective blocking action on cockroach nicotinic acetylcholine receptors. NeuroToxicology. 2011;32:123–129.10.1016/j.neuro.2010.10.003
  • Gianinazzi-Pearson V. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell. 1996;8:1871–1883.10.1105/tpc.8.10.1871
  • Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Science. 2000;289:1920–1921.10.1126/science.289.5486.1920
  • Powell CL. Development of mycorrhizal infections from Endogone spores and infected root segments. Trans. Br. Mycol. Soc. 1976;66:439–445.10.1016/S0007-1536(76)80214-8
  • Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–827.10.1038/nature03608
  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 1966;154:1189–1190.10.1126/science.154.3753.1189
  • Akiyama K, Ogasawara S, Ito S, Hayashi H. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 2010;51:1104–1117.10.1093/pcp/pcq058
  • Akiyama K, Hayashi H. Strigolactones as a host-derived signal in the arbuscular mycorrhizal symbiosis. J. Pestic. Sci. 2009;34:306–309.10.1584/jpestics.34.306
  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol. 2008;179:484–494.10.1111/nph.2008.179.issue-2
  • Akiyama K, Tanigawa F, Kashihara T, Hayashi H. Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochem. 2010;71:1865–1871.10.1016/j.phytochem.2010.08.010
  • Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem. Rev. 2011;111:28–67.10.1021/cr100109t
  • Galloway WRJD, Hodgkinson JT, Bowden S, Welch M, Spring DR. Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol. 2012;20:449–458.10.1016/j.tim.2012.06.003
  • Rasmussen TM, Givskov M. Quorum sensing inhibitors: a bargain of effects. Microbiol. 2006;152:895–904.10.1099/mic.0.28601-0
  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. U.S.A. 1997;94:6036–6041.10.1073/pnas.94.12.6036
  • Kai K, Furuyabu K, Tani A, Hayashi H. Production of the quorum-sensing molecules N-acylhomoserine lactones by endobacteria associated with Mortierella alpina A-178. ChemBioChem. 2012;13:1776–1784.10.1002/cbic.201200263
  • Kai K, Kasamatsu K, Hayashi H. (Z)-N-(4-Decenoyl)homoserine lactone, a new quorum-sensing molecule, produced by endobacteria associated with Mortierella alpina A-178. Tetrahedron Lett. 2012;53:5441–5444.10.1016/j.tetlet.2012.07.133
  • Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature. 2005;437:884–888.10.1038/nature03997
  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 1990;56:1919–1925.
  • Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill MAE. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol. Cell. 2002;9:685–694.10.1016/S1097-2765(02)00480-X
  • Raychaudhuri A, Tullock A, Tipton PA. Reactivity and reaction order in acylhomoserine lactone formation by Pseudomonas aeruginosa RhlI. Biochem. 2008;47:2893–2898.10.1021/bi702009n
  • Oikawa H, Yagi K, Ohashi S, Watanabe K, Mie T, Ichihara A, Honma M, Kobayashi K. Potent inhibition of macrophomate synthase by reaction intermediate analogs. Biosci. Biotechnol. Biochem. 2000;64:2368–2379.10.1271/bbb.64.2368
  • Cronan JE Jr, Klages AL. Chemical synthesis of acyl thioesters of acyl carrier protein with native structure. Proc. Natl. Acad. Sci. U.S.A. 1981;78:5440–5444.10.1073/pnas.78.9.5440
  • Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon JS, Hwang I, Rhee S. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc. Natl. Acad. Sci. U.S.A. 2011;108:12089–12094.10.1073/pnas.1103165108
  • Kai K, Fujii H, Ikenaka R, Akagawa M, Hayashi H. An acyl-SAM analog as an affinity ligand for identifying quorum sensing signal synthases. Chem. Commun. 2014;50:8586–8589.10.1039/C4CC03094J

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.