839
Views
9
CrossRef citations to date
0
Altmetric
Food & Nutrition Science

Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscleFootnote

, , , , , , & show all
Pages 1867-1875 | Received 25 Mar 2015, Accepted 26 May 2015, Published online: 03 Jul 2015

References

  • Yamanouchi K, Yoshikawa Y. Bovine spongiform encephalopathy (BSE) safety measures in Japan. J. Vet. Med. Sci. 2007;69:1–6.10.1292/jvms.69.1
  • Koizumi N, Iguchi H, Smith TE. Comparison and verification of BSE surveillance in USA and Japan. Environ. Health Prev. Med. 2005;10:130–137.10.1007/BF02900805
  • Bouley J, Chambon C, Picard B. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 2004;4:1811–1824.10.1002/(ISSN)1615-9861
  • Doherty MK, McLean L, Hayter JR, et al. The proteome of chicken skeletal muscle: Changes in soluble protein expression during growth in a layer strain. Proteomics. 2004;4:2082–2093.10.1002/(ISSN)1615-9861
  • Kim NK, Joh JH, Park HR, Kim OH, Park BY, Lee CS. Differential expression profiling of the proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics. 2004;4:3422–3428.10.1002/(ISSN)1615-9861
  • Doran P, Donoghue P, O’Connell K, Gannon J, Ohlendieck K. Proteomic profiling of pathological and aged skeletal muscle fibres by peptide mass fingerprinting (Review). Int. J. Mol. Med. 2007;19:547–564.
  • Doran P, Donoghue P, O’Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics. 2009;9:989–1003.10.1002/pmic.v9:4
  • Nishiumi S, Ashida H. Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci. Biotechnol. Biochem. 2007;71:2343–2346.10.1271/bbb.70342
  • Yamanoue M, Ueda S, Ohashi A, Yoshimura Y, Norioka S. The N-terminal sequence of paratropomyosin binding fragments from β-connectin. Biosci. Biotechnol. Biochem. 2003;67:563–569.10.1271/bbb.67.563
  • Ueda S, Tu-Sekine B, Yamanoue M, Raben DM, Shirai Y. The expression of diacylglycerol kinase theta during the organogenesis of mouse embryos. BMC Dev. Biol. 2013;13:35.10.1186/1471-213X-13-35
  • Ueda S, Kataoka T, Satoh T. Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites. Cell Signal. 2004;16:899–906.10.1016/j.cellsig.2004.01.007
  • Ueda S, Kataoka T, Satoh T. Activation of the small GTPase Rac1 by a specific guanine-nucleotide-exchange factor suffices to induce glucose uptake into skeletal-muscle cells. Biol. Cell. 2008;100:645–661.10.1042/BC20070160
  • Ueda S, Kitazawa S, Ishida K, et al. Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J. 2010;24:2254–2261.10.1096/fj.09-137380
  • Hoogland C, Mostaguir K, Sanchez JC, Hochstrasser DF, Appel RD. SWISS-2DPAGE, ten years later. Proteomics. 2004;4:2352–2356.10.1002/(ISSN)1615-9861
  • Sato Y, Shimizu M, Mizunoya W, et al. Differential expression of sarcoplasmic and myofibrillar proteins of rat soleus muscle during denervation atrophy. Biosci. Biotechnol. Biochem. 2009;73:1748–1756.10.1271/bbb.90085
  • Calderwood SK, Murshid A, Prince T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review”. Gerontology. 2009;55:550–558.10.1159/000225957
  • Arrigo AP, Simon S, Gibert B, et al. Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets. FEBS Lett. 2007;581:3665–3674.10.1016/j.febslet.2007.04.033
  • Liu Y, Steinacker JM. Changes in skeletal muscle heat shock proteins: pathological significance. Front Biosci. 2001;6:D12–25.10.2741/Liu
  • Larkins NT, Murphy RM, Lamb GD. Absolute amounts and diffusibility of HSP72, HSP25, and alphaB-crystallin in fast- and slow-twitch skeletal muscle fibers of rat. Am. J. Physiol. Cell Physiol. 2012;302:C228–C239.10.1152/ajpcell.00266.2011
  • Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br. Med. Bull. 2010;95:139–159.10.1093/bmb/ldq008
  • Åkerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 2010;11:545–555.10.1038/nrm2938
  • Nakai A, Morimoto RI. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell Biol. 1993;13:1983–1997.
  • Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011;91:1447–1531.10.1152/physrev.00031.2010
  • Gannon J, Doran P, Kirwan A, Ohlendieck K. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Eur. J. Cell Biol. 2009;88:685–700.10.1016/j.ejcb.2009.06.004
  • Golenhofen N, Perng MD, Quinlan RA, Drenckhahn D. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem. Cell Biol. 2004;122:415–425.
  • Fu L, Liang JJ. Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay. J. Biol. Chem. 2002;277:4255–4260.10.1074/jbc.M110027200
  • Fu L, Liang JJ. Enhanced stability of alpha B-crystallin in the presence of small heat shock protein Hsp27. Biochem. Biophys. Res. Commun. 2003;302:710–714.10.1016/S0006-291X(03)00257-2
  • Piétri-Rouxel F, Gentil C, Vassilopoulos S, et al. DHPR α1S subunit controls skeletal muscle mass and morphogenesis. EMBO J. 2010;29:643–654.10.1038/emboj.2009.366
  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 2005;12:842–846.10.1038/nsmb993
  • Kostenko S, Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol. Life Sci. 2009;66:3289–3307.10.1007/s00018-009-0086-3
  • O’Connell K, Gannon J, Doran P, Ohlendieck K. Proteomic profiling reveals a severely perturbed protein expression pattern in aged skeletal muscle. Int. J. Mol. Med. 2007;20:145–153.
  • Piec I, Listrat A, Alliot J, Chambon C, Taylor RG, Bechet D. Differential proteome analysis of aging in rat skeletal muscle. FASEB J. 2005;19:1143–1145.
  • Escobedo J, Pucci AM, Koh TJ. HSP25 protects skeletal muscle cells against oxidative stress. Free Radical Biol. Med. 2004;37:1455–1462.10.1016/j.freeradbiomed.2004.07.024
  • Doran P, Gannon J, O’Connell K, Ohlendieck K. Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7. Eur. J. Cell Biol. 2007;86:629–640.10.1016/j.ejcb.2007.07.003
  • Robbins J, Horan T, Gulick J, Kropp K. The chicken myosin heavy chain family. J. Biol. Chem. 1986;261:6606–6612.
  • Bandman E. Functional properties of myosin isoforms in avian muscle. Poult. Sci. 1999;78:729–734.10.1093/ps/78.5.729
  • Lindquist S, Craig EA. The heat-shock proteins. Annu. Rev. Genet. 1988;22:631–677.10.1146/annurev.ge.22.120188.003215
  • Glass DJ. A signaling role for dystrophin: inhibiting skeletal muscle atrophy pathways. Cancer Cell. 2005;8:351–352.
  • Dodd SL, Hain B, Senf SM, Judge AR. Hsp27 inhibits IKKbeta-induced NF-kappaB activity and skeletal muscle atrophy”. FASEB J. 2009;23:3415–3423.10.1096/fj.08-124602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.