674
Views
4
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

20-hydroxyecdysone accumulation and regulation in Ajuga lobata D. Don suspension culture

, , &
Pages 591-599 | Received 30 Jun 2015, Accepted 19 Oct 2015, Published online: 30 Nov 2015

References

  • Wang HM, Chen W, Liu DJ, et al. Determination of ecdysterone in Radix achyranthis bidentatae and Juejin Granula by HPLC. Chin. J. Exp. Traditional Med. Formulae. 2012;18:122–125.
  • Lafont R, Horn DHS. Phytoecdysteroids: structures and occurrence. In: Koolman J, editor. Ecdysone from chemistry to mode of action. Stuttgart: Thieme Verlag; 1989. p. 39–64.
  • Smagghe G. Ecdysone: structures and functions. Dordrecht: Springer Science. 2009; 3–45.
  • Bathori M, Toth N, Hunyadi A, et al. Phytoecdysteroids and anabolic-androgenic steroids – structure and effects on humans. Curr. Med. Chem. 2008;15:75–91.10.2174/092986708783330674
  • Dinan L. The Karlson Lecture. Phytoecdysteroids: what use are they? Arch. Insect Biochem. Physiol. 2009;72:126–141.
  • Lagova ND, Valueva IM. Effect of ecdysterone isolated from Rhaponticum carthamoides on the growth of experimental tumors. Eksperimental’naya Onkologiya. 1981;3:69–71.
  • Yoshida T, Otaka T, Uchiyama M, et al. Effect of ecdysterone on hyperglycemia in experimental animals. Biochem. Pharmacol. 1971;20:3263–3268.10.1016/0006-2952(71)90431-X
  • Okui S, Otaka T, Uchiyama M, et al. Stimulation of protein synthesis in mouse liver by insect-moulting steroids. Chem. Pharm. Bull. (Tokyo). 1968;16:384–387.10.1248/cpb.16.384
  • Otaka T, Okui S, Uchiyama M. Stimulation of protein synthesis in mouse liver by ecdysterone. Chem. Pharm. Bull. 1969;17:75–81.10.1248/cpb.17.75
  • Detmar M, Dumas M, Bonte F. Effects of ecdysterone on the differentiation of normal human keratinocytes in vitro. Eur. J. Dermatol. 1994;4:558–562.
  • Konovalova NR, Mitrokhin YI, Volkova LM, et al. Ecdysterone modulates antitumor activity of cytostatics and biosynthesis of macromolecules in umorbearing mice. Biol. Bull. 2002;29:530–536.10.1023/A:1021755622981
  • Li JF. Introduction of botanical pesticides. Anhui Agric. Sci. Bull. 2009;15:160–162.
  • He L, Wang LB, Jia L. The study on the mechanism of plant-insecticide. Pestic. Sci. Admin. 2013;34:16–19.
  • Cheng DM, Yousef GG, Grace MH, et al. In vitro production of metabolism enhancing phytoecdysteroids from Ajuga turkestanica. Plant Cell Tiss. Org. 2008;93:73–83.10.1007/s11240-008-9345-5
  • Baltaev UA. Phytoecdysteroids: structure, sources and biosynthetic pathways in plants. Bioorg Khim. 2000;26:892–925.
  • Adler JH, Grebenok RJ. Biosynthesis and distribution of insect-molting hormones in plants – A review. Lipids. 1995;30:257–262.10.1007/BF02537830
  • Benderoth M, Textor S, Windsor AJ, et al. Positive selection driving diversification in plant secondary metabolism. Proc. Nat. Acad. Sci. USA. 2006;103:9118–9123.10.1073/pnas.0601738103
  • Catalan RE, Aragones MD, Godoy JE, et al. Ecdysterone induces acetylcholinesterase in mammalian brain. Comp. Biochem. Physiol. Part C: Pharmacol. 1984;78:193–195.10.1016/0742-8413(84)90068-9
  • Catalán RE, Martinez AM, Aragones MD, et al. Alterations in rat lipid metabolism following ecdysterone treatment. Comp. Biochem. Physiol. Part B: Biochem. 1985;81:771–775.10.1016/0305-0491(85)90403-1
  • Li X, Qian JJ,, Li XC, et al. A Study on edysterone production of Ajuga lobata D. Don cell lines in suspension culture. Chin. Agr. Sci. Bull. 2013;29: 127–133.
  • Xiong Y, Qu W, Liang JY. Progress on chemical constituents and biological activities of the genus Ajuga. Strait Pharm. J. 2012;24:1–7.
  • Li WW, Wu WL, Liu SJ, et al. The Chemical components of the genus Ajuga. Anhui. Med. Pharm. J. 2009;13:329–337.
  • Chen F, Li XD, Wu FH. Ajuga decumbens Thunb and its dose-effect relation. J. Fujian Univ. of Traditional Chin. Med. 2009;19:27–29.
  • Richter K, Birkenbeil H. The effect of extracts of Ajuga reptans on moult regulation in Periplaneta americana. J. Insect Physiol. 1987;33:933–939.10.1016/0022-1910(87)90005-9
  • Lev SV, Zakirova RP, Saatov Z, et al. Ecdysteroids from tissue and cell cultures of Ajuga turkestanica. Khimiya Prirodnykh Soedinenii. 1990;1:51–52.
  • Tomás J, Camps F, Claveria E, et al. Composition and location of phytoecdysteroids in Ajuga reptans in vivo and in vitro cultures. Phytochemistry. 1992;31:1585–1591.10.1016/0031-9422(92)83112-C
  • Tanaka N, Matsumoto T. Regenerants of Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep. 1993;13:87–90.10.1007/BF00235296
  • Calcagno MP, Camps F, Coll J, et al. New phytoecdysteroids from roots of Ajuga reptans varieties. Tetrahedron. 1996;52:10137–10146.10.1016/0040-4020(96)00536-4
  • Nagakari M, Kushiro T, Matsumoto T, et al. Incorporation of acetate and cholesterol into 20-hydroxyecdysone by hairy root clone of Ajuga reptans var. Atropurpurea. Phytochemistry. 1994;36:907–910.10.1016/S0031-9422(00)90461-8
  • Fujimoto Y, Ohyama K, Nomura K, et al. Biosynthesis of sterols and ecdysteroids in Ajuga hairy roots. Lipids. 2000;35:279–288.10.1007/s11745-000-0524-z
  • Hyodo R, Fujimoto Y. Biosynthesis of 20-hydroxyecdysone in Ajuga hairy roots: the possibility of 7-ene introduction at a late stage. Phytochemistry. 2000;53:733–737.10.1016/S0031-9422(00)00018-2
  • Alekseeva LI. Ecdysone 20-monooxygenase activity of cytochrome P450 in Ajuga reptans L. plants and cell culture. Appl. Biochem. Micro. 2004;40:135–139.
  • Uozumi N, Makino S, Kobayashi T. 20-Hydroxyecdysone production in Ajuga hairy root controlling intracellular phosphate content based on kinetic model. J. Ferment. Bioeng. 1995;80:362–368.10.1016/0922-338X(95)94205-6
  • Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 1993;295:517–524.10.1042/bj2950517
  • Liao ZH, Chen M, Gong YF, et al. Isoprenoid biosynthesis in plants: pathways, genes, regulation and metabolic engineering. J. Biol. Sci. 2006;6:209–219.
  • Reuter K, Sanderbrand S, Jomaa H, et al. Crystal structure of 1-deoxy-D-xylulose-5-phosphate Reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J. Biol. Chem. 2002;277:5378–5384.10.1074/jbc.M109500200
  • Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science. 1999;285:1573–1576.10.1126/science.285.5433.1573
  • Luo YM, Liu AH, Li Q, et al. Study development on the biosynthesis path of plant terpenoids and its key enzyme. J. Jiangxi College Traditional Chin. Med. 2003;15:45–51.
  • Cao XB, Wang Z, Peng S, et al. Effects of lanthanum nitrate and L-phenylalanine on callus growth and total alkaloid accumulation of Pinellia ternata. Shandong Agric. Sci. 2012;44:26–28.
  • Qiao M, Sun JW, Chen Y, et al. Wheat suspension cell replication elicitor stimulation of Ca2+ and NO allergic reaction dynamics and its interactions. Chin. Bull. Bot. 2015;50:1–11.
  • Yang JC. Cell engineering. Beijing: Chemical industry press; 2008.
  • Zhang CY, Liu J, Duan QQ, et al. Photo-induced NO relase in SNP aqueous solution and its photobiological appications. J. Shanxi Univ. (Nat. Sci. Ed.). 2014;37:609–613.
  • Lou YJ, Chen Y, Yang J. Nitric Oxide releasing pathway and kinetics from sodium nitroprusside in Ringer-Locke’s solution. J. Zhenjiang Univ. 2000;06:241–244.
  • Cusidó RM, Palazón J, Navia-Osorio A, et al. Production of Taxol® and baccatin III by a selected Taxus baccata callus line and its derived cell suspension culture. Plant Sci. 1999;146:101–107.10.1016/S0168-9452(99)00093-X
  • Oh K, Kato T, Xu H. Transport of nitrogen assimilation in xylem vessels of green tea plants fed with NH4-N and NO3-N. Pedosphere. 2008;18:222–226.10.1016/S1002-0160(08)60010-7
  • Li ZL, Rao QR, Li GX, et al. Monitor of cell growth and taxol accumulation in cell suspension culture of Taxus chinensis by conductivity of medium. Nat. Prod. Res. Dev. 2008;20:346–348.
  • Xiao WJ, Yang G, Guo LP, et al. Study on the gowth kinetics of Sorbus sucuparia L. in suspension cultured cells. Mod. Chin. Med. 2013;15:569–573.
  • Monod J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949;3:371–394.10.1146/annurev.mi.03.100149.002103
  • Gabriel JP, Saucy F, Bersier LF. Paradoxes in the logistic equation? Ecol. Model. 2005;185:147–151.10.1016/j.ecolmodel.2004.10.009
  • Yue GJ, Liu WX, Liu JS, et al. Product kinetics of Logistic model to simulate ethanol fermentation. T. Chin. Soc. Agric. Eng. 2015;31:280–285.
  • Hu F, Shi Q, Huang LJ. Induction of adventitious roots during tissue culture of Acacia mangium and A. auriculiformis elite trees. J. Nanjing For. Univ. (Nat. Sci. Edit.). 2015;39:57–62.
  • Su YL, Tian P, Wei WD. Induction and proliferation culture of adventitious shoots from Pyrus communis leaves. Nonwood For. Res. 2015;33:103–106.
  • Song T, Peng F, Tan CY. Effect of precursors on the content of stachydrine hydrochloride in the hydroponic Herba leonuri. Cent. S. Pharm. 2012;10:814–817.
  • Lv JJ, Hu GS, Li JK, et al. Effects of precursor feeding and fungal elicitors on secondary metabolits in cell suspension culture of Cistanche deserticola. J. Chin. Med. Mater. 2009;32:171–173.
  • Gong SS, Han J, Gao YZ, et al. Effects of inhibitor and safener on enzyme activity and phenanthrene metabolism in root of tall fescue. Acta Ecol. Sin. 2011;31:4027–4033.
  • Chen XW, Ma YP, Xu CX, et al. Effects of exogenous polyamines and polyamine metabolism inhibitors on and chloroplastsionic homeostasis and thylakoid membrane conjugated H+-ATPase activity of Ziziphus jujuba Mill. under salt stress. J. Cent. S. Univ. For. Tech. 2012;32:1–8
  • Wang XJ, Li Z, Peng Y. The antioxidant enzyme activities and gene expression induced by spermidine in leaves of white clover. Acta Pratac. Sin. 2015;24:140–147.
  • Liu JX, Hu HB, Wang X, et al. Effect of nitric oxide on proline accumulation in ryegrass seedlings subjected to salt stress. Agrestia Sin. 2010;18:786–791.
  • Wang F, Chang PP, Chen YP, et al. Effects of exogenous nitric oxide on seedling growth and physiological characteristics of maize seedlings under cadmium stress. Acta Pratac. Sin. 2013;22:178–186.
  • Xu MJ, Dong JF, Zhu MY. Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth. suspension cells through a salicylic acid (SA)-dependent and a jasmonic acid (JA)-dependent signal pathway. Sci. Chin. Ser. C: Life Sci. 2006; 2006, 49: 379–389.10.1007/s11427-006-2010-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.