3,320
Views
25
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source

, , &
Pages 1440-1450 | Received 24 Nov 2015, Accepted 11 Feb 2016, Published online: 16 Mar 2016

References

  • Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1990;54:450–472.
  • Hokamura A, Fujino K, Isoda Y, et al. Characterization and identification of the proteins bound to two types of polyhydroxyalkanoate granules in Pseudomonas sp. 61-3. Biosci. Biotechnol. Biochem. 2015;79:1369–1377.10.1080/09168451.2015.1023250
  • Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555.10.1016/S0079-6700(00)00035-6
  • Rehm BHA. Polyester synthases: natural catalysts for plastics. Biochem. J. 2003;376:15–33.10.1042/bj20031254
  • Nomura CT, Taguchi K, Taguchi S, Doi Y. Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl. Environ. Microbiol. 2004;70:999–100710.1128/AEM.70.2.999-1007.2004
  • Kek YK, Chang CW, Amirul AA, et al. Heterologous expression of Cupriavidus sp. USMAA2-4 PHA synthase gene in PHB−4 mutant for the production of poly(3-hydroxybutyrate) and its copolymers. World J. Microbiol. Biotechnol. 2010;26:1595–1603.10.1007/s11274-010-0335-5
  • Rai R, Keshavarz T, Roether JA, et al. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mat. Sci. Eng. R. 2011;72:29–47.10.1016/j.mser.2010.11.002
  • Chen GQ. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen GQ, editor. Plastics from bacteria: natural functions and application. Berlin: Spinger-Verlag; 2010. p. 1–450.10.1007/978-3-642-03287-5
  • Choi J, Lee SY. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess. Eng. 1997;17:335–342.10.1007/s004490050394
  • Ashby RD, Solaiman DK, Foglia TA. Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 2004;12:105–112.10.1023/B:JOOE.0000038541.54263.d9
  • Cavalheiro JMBT, de Almeida MCMD, Grandfils C, et al. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process. Biochem. 2009;44:509–515.10.1016/j.procbio.2009.01.008
  • Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol – a byproduct of biodiesel production. Biotechnol. Biofuels. 2012;5:13–23.10.1186/1754-6834-5-13
  • Fu J, Sharma U, Sparling R, et al. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Can. J. Microbiol. 2014;60:461–468.10.1139/cjm-2014-0108
  • Palmeri R, Pappalardo F, Fragalà M, et al. Polyhydroxyalkanoates (PHAs) production through conversion of glycerol by selected strains of Pseudomonas mediterranea and Pseudomonas corrugata. Chem. Eng. Trans. 2012;27:121–126.
  • Annuar MSM, Tan IKP, Ramachandran KB. Evaluation of nitrogen sources for growth and production of medium-chain-length poly-(3-hydroxyalkanoates) from palm kernel oil by Pseudomonas putida PGA1. AsPac. J. Mol. Biol. Biotechnol. 2008;16:11–15.
  • Rehm BH, Valla S. Bacterial alginates: biosynthesis and applications. Appl. Microbiol. Biotechnol. 1997;48:281–288.10.1007/s002530051051
  • Remminghorst U, Rehm BHA. Bacterial alginates: from biosynthesis to applications. Biotechnol. Lett. 2006;28:1701–1712.10.1007/s10529-006-9156-x
  • Guo W, Song C, Kong M, et al. Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl. Microbiol. Biotechnol. 2011;92:791–801.10.1007/s00253-011-3333-0
  • Zhao X, Liu J, Hu Y, et al. Optimization on condition of glycyrrhetinic acid liposome by RSM and the research of its immunological activity. Int. J. Biol. Macromol. 2012;51:299–304.10.1016/j.ijbiomac.2012.05.005
  • Chanasit W, Sueree L, Hodgson B, et al. The production of poly(3-hydroxybutyrate) [P(3HB)] by a newly isolated Bacillus sp. ST1C using liquid waste from biodiesel production. Ann. Microbiol. 2014;64:1157–1166.10.1007/s13213-013-0755-1
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425.
  • Lau NS, Tsuge T, Sudesh K. Formation of new polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer in Burkholderia sp. Appl. Microbiol. Biotechnol. 2011;89:1599–1609.10.1007/s00253-011-3097-6
  • Kulpreecha S, Boonruangthavorn A, Meksiriporn B, et al. Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng. 2009;107:240–245.10.1016/j.jbiosc.2008.10.006
  • Lee SH, Kim JH, Mishra D, et al. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 2011;102:6159–6166.10.1016/j.biortech.2011.03.025
  • Solaiman DK, Ashby RD, Foglia TA. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 2000;53:690–694.10.1007/s002530000332
  • Sujatha K, Mahalakshmi A, Shenbagarathai R. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates. Arch. Microbiol. 2007;188:451–462.10.1007/s00203-007-0265-2
  • Sun Z, Ramsay JA, Guay M, et al. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2007;74:69–77.10.1007/s00253-006-0655-4
  • Gumel AM, Annuar MSM, Heidelberg T. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PLoS One. 2012;7:e45214. doi:10.1371/journal.pone.0045214.
  • Shahid S, Mosrati R, Ledauphin J, et al. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J. Biosci. Bioeng. 2013;116:302–308.10.1016/j.jbiosc.2013.02.017
  • Gustafsson Ö, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environ. Sci. Technol. 1997;31:203–209.10.1021/es960317s
  • Bondioli P, Della Bella L. An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur. J. Lipid Sci. Technol. 2005;107:153–157.10.1002/(ISSN)1438-9312
  • Castellane TCL, Lemos MVF. Lemosa EGdM. Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production. Carbohydr. Polym. 2014;111:191–197.10.1016/j.carbpol.2014.04.066
  • Chaki T, Kakimi H, Shibata A, et al. Detection of Alginate Oligosaccharides from Mollusks. Biosci. Biotechnol. Biochem. 2006;70:2793–2796.10.1271/bbb.60313
  • Aragone MR, Maurizi DM, Clara LO, et al. Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J. Clin. Microbiol. 1992;30:1583–1584.
  • Zhu C, Nomura CT, Perrotta JA, et al. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol. Prog. 2010;26:424–430.
  • Ibrahim MHA, Steinbüchel A. Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol. J. Appl. Microbiol. 2010;108:214–225.10.1111/jam.2009.108.issue-1
  • Kalaiyezhini D, Ramachandran KB. Biosynthesis of poly-3-hydroxybutyrate (PHB) from glycerol by Paracoccus denitrificans in a batch bioreactor: effect of process variables. Prep. Biochem. Biotechnol. 2015;45:69–83.10.1080/10826068.2014.887582
  • Taidi B, Anderson AJ, Dawes EA, et al. Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus. Appl. Microbiol. Biotechnol. 1994;40:786–790.10.1007/BF00173975
  • Beaulieu M, Beaulieu Y, Melinard J, et al. Influence of ammonium salts and cane molasses on growth of Alcaligenes eutrophus and production of polyhydroxybutyrate. Appl. Environ. Microbiol. 1995;61:165–169.
  • Grothe E, Moo-Young M, Chisti Y. Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb. Technol. 1999;25:132–141.10.1016/S0141-0229(99)00023-X
  • Belal EB. Production of poly-β-hydroxybutyric acid (PHB) by Rhizobium elti and Pseudomonas stutzeri. Curr. Res. J. Biol. Sci. 2013;5:273–284.
  • Zafar M, Kumar S, Kumar S, et al. Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology. Biocatal. Agric. Biotechnol. 2012;1:70–79.
  • Marsudi S, Tan IKP, Gan SN, et al. Production of medium chain length polyhydroxyalkanoates from oleic acid using Pseudomonas putida PGA1 by fed batch culture. Makara Teknologi. 2007;11:1–4.
  • Lee HJ, Choi MH, Kim TU, et al. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl. Environ. Microbiol. 2001;67:4963–4974.10.1128/AEM.67.11.4963-4974.2001
  • Chee JY, Yoga SS, Lau NS, et al. Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. In: Mendez-Vilas A, editor. Current research, technology and education topics in Applied Microbiology and Microbial Biotechnology. Vol. 2. Badajoz: Formatex Research Center Publishers; 2010. p. 789–1620.
  • Lee WH, Loo CY, Nomura CT, et al. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 2008;99:6844–6851.10.1016/j.biortech.2008.01.051
  • Goff M, Nikodinovic-Runic J, O’Connor KE. Characterization of temperature-sensitive and lipopolysaccharide overproducing transposon mutants of Pseudomonas putida CA-3 affected in PHA accumulation. FEMS Microbiol. Lett. 2009;292:297–305.10.1111/fml.2009.292.issue-2
  • Simon-Colin C, Alain K, Colin S, et al. A novel mcl-PHA-producing bacterium, Pseudomonas guezennei sp. nov., isolated from a ‘kopara’ mat located in Rangiroa, an atoll of French Polynesia. J. Appl. Microbiol. 2008;104:581–586
  • Madison LL, Huisman GW. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 1999;63:21–53.
  • Tian W, Hong K, Chen GQ, et al. Production of polyesters consisting of medium chain length 3- hydroxyalkanoic acids by Pseudomonas mendocina 0806 from various carbon sources. Anton. van. Leeuwenhoek. 2000;77:31–36.10.1023/A:1002099023046
  • Rai R, Yunos DM, Boccaccini AR, et al. Poly-3-hydroxyoctanoate P(3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules. 2011;12:2126–2136.10.1021/bm2001999
  • Matsusaki H, Manji S, Taguchi K, et al. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 1998;180:6459-6467.
  • Tan Y, Neo PC, Najimudin N, et al. Cloning and characterization of poly(3-hydroxybutyrate) biosynthesis genes from Pseudomonas sp. USM 4-55. J. Basic Microbiol. 2010;50:179–189.
  • Guo W, Feng J, Geng W, et al. Augmented production of alginate oligosaccharides by the Pseudomonas mendocina NK-01 mutant. Carbohydr. Res. 2012;352:109–116.10.1016/j.carres.2012.02.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.