825
Views
29
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

miR-30 functions as an oncomiR in gastric cancer cells through regulation of P53-mediated mitochondrial apoptotic pathway

, , &
Pages 119-126 | Received 25 Apr 2016, Accepted 08 Sep 2016, Published online: 12 Oct 2016

References

  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J. Clin. 2015;65:87–108.10.3322/caac.21262
  • Choi YY, Noh SH, Cheong JH. Molecular dimensions of gastric cancer: translational and clinical perspectives. J. Pathol. Transl. Med. 2016;50:1–9.10.4132/jptm.2015.09.10
  • Marano L, Polom K, Patriti A, et al. Surgical management of advanced gastric cancer: an evolving issue. Eur. J. Surg. Oncol. 2016;42:18–27.10.1016/j.ejso.2015.10.016
  • Wu J, Qin H, Li T, et al. Characterization of site-specific glycosylation of secreted proteins associated with multi-drug resistance of gastric cancer. Oncotarget. 2016;7:25315–25327.
  • Irmak-Yazicioglu MB. Mechanisms of microRNA deregulation and microRNA targets in gastric cancer. Oncol. Res. Treat. 2016;39:136–139.10.1159/000443224
  • Kang C, Song JJ, Lee J, et al. Epigenetics: an emerging player in gastric cancer. World J. Gastroenterol. 2014;20:6433–6447.10.3748/wjg.v20.i21.6433
  • Juzenas S, Salteniene V, Kupcinskas J, et al. Analysis of deregulated microRNAs and their target genes in gastric cancer. PLoS ONE. 2015;10:e132327.
  • Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J. Gastroenterol. 2014;20:5694–5699.10.3748/wjg.v20.i19.5694
  • Yang G, Gong Y, Wang Q, et al. The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. Cell. Signal. 2015;27:1087–1101.10.1016/j.cellsig.2015.02.013
  • Li Z, Li D, Zhang G, et al. Methylation-associated silencing of MicroRNA-335 contributes tumor cell invasion and migration by interacting with RASA1 in gastric cancer. Am. J. Cancer Res. 2014;4:648–662.
  • Liang H, Wang F, Chu D, et al. miR-93 functions as an oncomiR for the downregulation of PDCD4 in gastric carcinoma. Sci. Rep. 2016;6:23772.10.1038/srep23772
  • Li NA, Wang W, Xu B, et al. miR-196b regulates gastric cancer cell proliferation and invasion via PI3K/AKT/mTOR signaling pathway. Oncol. Lett. 2016;11:1745–1749.
  • Chu SJ, Wang G, Zhang PF, et al. MicroRNA-203 suppresses gastric cancer growth by targeting PIBF1/Akt signaling. J. Exp. Clin. Cancer Res. 2016;35:87.10.1186/s13046-016-0323-1
  • Xu Y, Jin J, Liu Y, et al. Snail-regulated MiR-375 inhibits migration and invasion of gastric cancer cells by targeting JAK2. PLoS ONE. 2014;9:e99516.10.1371/journal.pone.0099516
  • Shen ZY, Zhang ZZ, Liu H, et al. miR-375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression. Exp. Ther. Med. 2014;7:1757–1761.
  • Tsukasa K, Ding Q, Miyazaki Y, et al. miR-30 family promotes migratory and invasive abilities in CD133 pancreatic cancer stem-like cells. Hum. Cell. 2016;29:130–137.
  • Zhang Q, Tang Q, Qin D, et al. Role of microRNA 30a targeting insulin receptor substrate 2 in colorectal tumorigenesis. Mol. Cell. Biol. 2015;35:988–1000.10.1128/MCB.01242-14
  • Yang C, Pan Y. Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumour Biol. 2015. doi:10.1007/s13277-015-3775-6
  • Che S, Sun T, Wang J, et al. miR-30 overexpression promotes glioma stem cells by regulating Jak/STAT3 signaling pathway. Tumour Biol. 2015;36:6805–6811.10.1007/s13277-015-3400-8
  • Yin G, Zhou H, Xue Y, et al. MicroRNA-340 promotes the tumor growth of human gastric cancer by inhibiting cyclin G2. Oncol. Rep. 2016;36:1111–1118.
  • Lin J, Xu K, Wei J, et al. MicroRNA-124 suppresses tumor cell proliferation and invasion by targeting CD164 signaling pathway in non-small cell lung cancer. J. Gene. Ther 2016; 2. pii: 6.
  • Zhou C, Tan W, Lv H, et al. Hypoxia-inducible microRNA-488 regulates apoptosis by targeting Bim in osteosarcoma. Cell. Oncol. (Dordr) 2016;39:463–471.
  • Li J, Donath S, Li Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 2010;6:e1000795.10.1371/journal.pgen.1000795
  • Forini F, Kusmic C, Nicolini G, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. 2014;155:4581–4590.10.1210/en.2014-1106
  • Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.10.1038/nature14344
  • Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 2001;7:683–694.10.1016/S1097-2765(01)00214-3
  • Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 2015;356:197–203.10.1016/j.canlet.2013.12.025
  • Chi SW. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 2014;47:167–172.10.5483/BMBRep.2014.47.3.261
  • Saleem A, Iqbal S, Zhang Y, et al. Effect of p53 on mitochondrial morphology, import, and assembly in skeletal muscle. Am. J. Physiol. Cell Physiol. 2015;308:C319–C329.10.1152/ajpcell.00253.2014
  • Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell. 2003;11:577–590.10.1016/S1097-2765(03)00050-9
  • Kadenbach B, Arnold S, Lee I, et al. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim. Biophys. Acta. 2004;1655:400–408.10.1016/j.bbabio.2003.06.005
  • Haupt S, Berger M, Goldberg Z, et al. Apoptosis—the p53 network. J. Cell Sci. 2003;116:4077–4085.10.1242/jcs.00739
  • Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999;18:6027–6036.10.1093/emboj/18.21.6027
  • Wang L, Hu T, Shen J, et al. Miltirone induced mitochondrial dysfunction and ROS-dependent apoptosis in colon cancer cells. Life Sci. 2016;151:224–234.
  • Fallahian F, Aghaei M, Abdolmohammadi MH, et al. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines: Gaillardin-induced apoptosis in breast cancer cell lines. Cell Biol. Toxicol. 2015;31:295–305.10.1007/s10565-016-9312-6
  • Leu JI, Dumont P, Hafey M, et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 2004;6:443–450.10.1038/ncb1123
  • Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053–1058.10.1126/science.288.5468.1053
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.