4,604
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Methods to characterize the structure of food powders – a review

ORCID Icon, &
Pages 651-671 | Received 03 Nov 2016, Accepted 10 Dec 2016, Published online: 12 Jan 2017

References

  • Bhandari BR. Introduction to food powders. In: Bhandari BR, Bansal N, Zhang M, Schuck P, Editors. Handbook of food powders: processes and properties. Cambridge: Woodhead Publishing Limited; 2013. p. 1–15.
  • Einfalt T, Planinsek O, Hrovat K. Methods of amorphization and investigation of the amorphous state. Acta Pharma. 2013;63(3):305–334.
  • Beckett ST. Industrial chocolate manufacture and use. 2nd ed. New Delhi: Wiley; 1994.10.1007/978-1-4615-2111-2
  • Buckton G, Darcy P. Assessment of disorder in crystalline powders – a review of analytical techniques and their application. Int J Pharm. 1999;179(2):141–158.10.1016/S0378-5173(98)00335-4
  • Johari GP, Ram S, Astl G, et al. Characterizing amorphous and microcrystalline solids by calorimetry. J Non-Cryst Solids. 1990;116(2–3):282–285.10.1016/0022-3093(90)90703-O
  • Li J, Guo Y, Zografi G. The solid‐state stability of amorphous quinapril in the presence of β‐cyclodextrins. J Pharm Sci. 2002;91(1):229–243.10.1002/jps.10014
  • Burnett DJ, Khoo J, Naderi M, Heng JYY, Wang GD, Thielmann F. Effect of processing route on the surface properties of amorphous indomethacin measured by inverse gas chromatography. AAPS Pharm Sci Tech. 2012;13(4):1511–1517.10.1208/s12249-012-9881-5
  • Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Delivery Rev. 2001;48(1):27–42.10.1016/S0169-409X(01)00098-9
  • Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006;95(8):1641–1665.10.1002/jps.20644
  • Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.10.1021/js9601896
  • Zografi G. States of water associated with solids. Drug Dev Ind Pharm. 1988;14(14):1905–1926.10.3109/03639048809151997
  • Ho BT. Production of ethylene powder by encapsulation of ethylene gas into α-cyclodextrin and its application for the ripening of fruit. PhD Thesis, School of Agriculture and Food Sciences, The University of Queensland, Brisbane. 2013.
  • Ho TM, Howes T, Bhandari BR. Encapsulation of CO2 into amorphous and crystalline α-cyclodextrin powders and the characterization of the complexes formed. Food Chem. 2015;187:407–415.10.1016/j.foodchem.2015.04.094
  • Bhandari BR, Howes T. Implication of glass transition for the drying and stability of dried foods. J Food Eng. 1999;40(1–2):71–79.10.1016/S0260-8774(99)00039-4
  • Roos Y, Karel MA. Crystallization of amorphous lactose. J Food Sci. 1992;57(3):775–777.10.1111/jfds.1992.57.issue-3
  • Ho TM, Howes T, Bhandari BR. Characterization of crystalline and spray-dried amorphous α-cyclodextrin powders. Powder Technol. 2015;284:585–594.10.1016/j.powtec.2015.06.027
  • Islam MIU, Langrish TAG. An investigation into lactose crystallization under high temperature conditions during spray drying. Food Res Int. 2010;43(1):46–56.10.1016/j.foodres.2009.08.010
  • Craig DQ, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179(2):179–207.10.1016/S0378-5173(98)00338-X
  • Bhandari B, Roos YH. Food materials science and engineering: an overview. In: Bhandari B, Roos YH, Editors. Food materials science and engineering. Oxford: Wiley-Blackwell; 2012. p. 1–23.10.1002/9781118373903
  • Chen JC, Chou C-C. Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. 12th ed. New York (NY): Wiley; 1993.
  • Asadi M. Beet-sugar handbook. Hoboken (NJ): Wiley; 2006.10.1002/0471790990
  • Hanselmann W. Chocolate products containing amorphous solids and methods of producing same. US Patent: US8617635 B2. 2013.
  • Merget R, Bauer T, Küpper H, et al. Health hazards due to the inhalation of amorphous silica. Arch Toxicol. 2002;75(11–12):625–634.10.1007/s002040100266
  • Yang YX, Song ZM, Cheng B, et al. Evaluation of the toxicity of food additive silica nanoparticles on gastrointestinal cells. J Appl Toxicol. 2014;34(4):424–435.10.1002/jat.2962
  • Villota R, Hawkes JG, Cochrane H. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. Crit Rev Food Sci Nutr. 1986;23(4):289–321.10.1080/10408398609527428
  • McLaughlin JK, Chow WH, Levy LS. Amorphous silica: a review of health effects from inhalation exposure with particular reference to cancer. J Toxicol Environ Health. 1997;50(6):553–566.10.1080/15287399709532054
  • Dekkers S, Krystek P, Peters RJB, et al. Presence and risks of nanosilica in food products. Nanotoxicology. 2011;5(3):393–405.10.3109/17435390.2010.519836
  • Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int. 2007;40(9):1107–1121.10.1016/j.foodres.2007.07.004
  • Buera P, Schebor C, Elizalde B. Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations. J Food Eng. 2005;67(1-2):157–165.10.1016/j.jfoodeng.2004.05.052
  • Shimada Y, Roos YH, Karel M. Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. J Agric Food Chem. 1991;39(4):637–641.10.1021/jf00004a001
  • Drusch S, Serfert Y, Van Den Heuvel A, et al. Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Res Int. 2006;39(7):807–815.10.1016/j.foodres.2006.03.003
  • Ferreira CD, da Conceicao EJL, Machado BAS, et al. Physicochemical characterization and oxidative stability of microencapsulated crude palm oil by spray drying. Food Bioprocess Technol. 2016;9(1):124–136.10.1007/s11947-015-1603-z
  • Fäldt P, Bergenståhl B. Fat encapsulation in spray-dried food powders. J Am Oil Chem Soc. 1995;72(2):171–176.10.1007/BF02638895
  • Carolina BC, Carolina S, Zamora MC, et al. Glass transition temperatures and some physical and sensory changes in stored spray-dried encapsulated flavors. Food Sci Technol. 2007;40(10):1792–1797.
  • Ho TM, Howes T, Bhandari BR. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents – Part 1: encapsulation capacity and stability of inclusion complexes. Food Chem. 2016;203:348–355.10.1016/j.foodchem.2016.02.076
  • Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39(9):1033–1046.10.1016/S0032-9592(03)00258-9
  • Hedges AR, Shieh WJ, Sikorski CT. Use of cyclodextrins for encapsulation in the use and treatment of food products. In: Risch SJ, Reineccius GA, editors. Encapsulation and controlled release of food ingredients. Vol. 590, ACS Symposium Series. Washington, DC: American Chemical Society; 1995. p. 60–71.
  • Ho TM, Howes T, Bhandari BR. Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol. 2014;259:87–108.10.1016/j.powtec.2014.03.054
  • Shrestha M, Ho TM, Bhandari BR. Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder. Food Chem. 2016;221:1474–1483.
  • Ho TM, Howes T, Jack KS, Bhandari BR. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 2: Characterization of complexed powders and determination of crystalline structure. Food Chem. 2016;206:92–101.10.1016/j.foodchem.2016.03.044
  • Caira MR. On the isostructurality of cyclodextrin inclusion complexes and its practical utility. Revue Roumaine de Chimie. 2001;46(4):371–386.
  • Das R, Ali ME, Abd SB. Hamid, current applications of X-ray powder diffraction – a review. Rev Adv Mater Sci. 2014;38(2):95–109.
  • Pecharsky VK, Zavalij PY. Fundamentals of powder diffraction and structural characterization of materials. 2nd ed. New York (NY): Springer Science+Business Media LLC.; 2009.
  • Chidavaenzi OC, Buckton G, Koosha F. The effect of co-spray drying with polyethylene glycol 4000 on the crystallinity and physical form of lactose. Int J Pharm. 2001;216(1–2):43–49.10.1016/S0378-5173(00)00693-1
  • Caparino OA, Tang J, Nindo CI, et al. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. J Food Eng. 2012;111(1):135–148.10.1016/j.jfoodeng.2012.01.010
  • Wang W, Zhou WB. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier. Food Chem. 2015;168:417–422.10.1016/j.foodchem.2014.07.065
  • Haque K, Roos YH. Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose. Carbohydr Res. 2005;340(2):293–301.10.1016/j.carres.2004.11.026
  • Saffari M, Langrish T. Effect of lactic acid in-process crystallization of lactose/protein powders during spray drying. J Food Eng. 2014;137:88–94.10.1016/j.jfoodeng.2014.04.002
  • Chiou D, Langrish TAG, Braham R. The effect of temperature on the crystallinity of lactose powders produced by spray drying. J Food Eng. 2008;86(2):288–293.10.1016/j.jfoodeng.2007.10.005
  • Mangolim CS, Moriwaki C, Nogueira AC, et al. Curcumin-beta-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014;153:361–370.10.1016/j.foodchem.2013.12.067
  • Bai Y, Rahman MS, Perera CO, et al. Structural changes in apple rings during convection air-drying with controlled temperature and humidity. J Agric Food Chem. 2002;50(11):3179–3185.10.1021/jf011354s
  • Falcone PM, Baiano A, Conte A, et al. Imaging techniques for the study of food microstructure: a review. Adv Food Nutr Res. 2006;51:206–263.
  • Kaláb M, Allan-Wojtas P, Miller SS. Microscopy and other imaging techniques in food structure-analysis. Trends Food Sci Technol. 1995;6(6):177–186.10.1016/S0924-2244(00)89052-4
  • Bache IC, Donald AM. The structure of the gluten network in dough: a study using environmental scanning electron microscopy. J Cereal Sci. 1998;28(2):127–133.10.1006/jcrs.1997.0176
  • Mimouni A, Deeth HC, Whittaker AK, et al. Investigation of the microstructure of milk protein concentrate powders during rehydration: alterations during storage. J Dairy Sci. 2010;93(2):463–472.10.3168/jds.2009-2369
  • Gaiani C, Ehrhardt JJ, Scher J, et al. Surface composition of dairy powders observed by X-ray photoelectron spectroscopy and effects on their rehydration properties. Colloids Surf B-Biointerfaces. 2006;49(1):71–78.10.1016/j.colsurfb.2006.02.015
  • Kim EHJ, Chen XD, Pearce D. Surface characterization of four industrial spray-dried dairy powders in relation to chemical composition, structure and wetting property. Colloids Surf B-Biointerfaces. 2002;26(3):197–212.10.1016/S0927-7765(01)00334-4
  • Marabi A, Mayor G, Burbidge A, et al. Assessing dissolution kinetics of powders by a single particle approach. Chem Eng J. 2008;139(1):118–127.10.1016/j.cej.2007.07.081
  • Marabi A, Mayor G, Raemy A, et al. Solution calorimetry: a novel perspective into the dissolution process of food powders. Food Res Int. 2007;40(10):1286–1298.10.1016/j.foodres.2007.08.007
  • Yazdanpanah N, Langrish TAG. Egg-shell like structure in dried milk powders. Food Res Int. 2011;44(1):39–45.10.1016/j.foodres.2010.11.019
  • Hermansson AM, Buchheim W. Characterization of protein gels by scanning and transmission electron microscopy A methodology study of soy protein gels. J Colloid Interface Sci. 1981;81(2):519–530.10.1016/0021-9797(81)90433-1
  • Karlsson A, Ipsen R, Ardö Y. Observations of casein micelles in skim milk concentrate by transmission electron microscopy. LWT-Food Sci Technol. 2007;40(6):1102–1107.10.1016/j.lwt.2006.05.012
  • Clas SD, Dalton CR, Hancock BC. Differential scanning calorimetry: applications in drug development. Pharm Sci Technol Today. 1999;2(8):311–320.10.1016/S1461-5347(99)00181-9
  • Lukas K, LeMaire PK. Differential scanning calorimetry: fundamental overview. Resonance. 2009;14(8):807–817.10.1007/s12045-009-0076-7
  • Luisi M, Wilthan B, Pottlacher G. Influence of purge gas and spacers on uncertainty of high-temperature heat flux DSC measurements. J Therm Anal Calorim. 2015;119(3):2329–2334.10.1007/s10973-014-4329-7
  • Lever T. Optimizing DSC experiments. In: Craig DQ, Reading M, Editors. Thermal analysis of pharmaceuticals. Florida: CRC press; 2006. p. 23–51.
  • Ho TM, Howes T, Bhandari BR. Characterization of crystalline and spray-dried amorphous α-cyclodextrin powders. Powder Technol. 2015;284:585–594.10.1016/j.powtec.2015.06.027
  • Kaminski K, Adrjanowicz K, Kaminska E, et al. Impact of water on molecular dynamics of amorphous α-, β-, and γ-cyclodextrins studied by dielectric spectroscopy. Phys Rev E. 2012;86: (3)031506-1–031506-9.
  • Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167–193.
  • Roos YH, Drusch S. Phase transitions in foods. 2nd ed. Oxford: Academic Press; 2015.
  • Chuy LE, Labuza TP. Caking and stickiness of dairy-based food powders as related to glass transition. J Food Sci. 1994;59(1):43–46.10.1111/jfds.1994.59.issue-1
  • Jouppila K, Roos Y. Glass transitions and crystallization in milk powders. J Dairy Sci. 1994;77(10):2907–2915.10.3168/jds.S0022-0302(94)77231-3
  • Roos Y. Melting and glass transitions of low molecular weight carbohydrates. Carbohydr Res. 1993;238(C):p. 39–48.10.1016/0008-6215(93)87004-C
  • Roos Y, Karel M. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J Food Sci. 1991;56(6):1676–1681.10.1111/jfds.1991.56.issue-6
  • Foster KD, Bronlund JE, Paterson AHJ. Glass transition related cohesion of amorphous sugar powders. J Food Eng. 2006;77(4):997–1006.10.1016/j.jfoodeng.2005.08.028
  • Lloyd RJ, Dong Chen X, Hargreaves JB. Glass transition and caking of spray-dried lactose. Int J Food Sci Technol. 1996;31(4):305–311.10.1046/j.1365-2621.1996.00352.x
  • Shrestha AK, Ua-arak T, Adhikari BP, et al. Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int J Food Prop. 2007;10(3):661–673.10.1080/10942910601109218
  • Goula AM, Karapantsios TD, Achilias DS, et al. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J Food Eng. 2008;85(1):73–83.10.1016/j.jfoodeng.2007.07.015
  • Jaya S, Das H. Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioprocess Technol. 2009;2(1):89–95.10.1007/s11947-007-0047-5
  • Szcześniak L, Rachocki A, Tritt-Goc J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose. 2008;15(3):445–451.10.1007/s10570-007-9192-2
  • Saleki-Gerhardt A, Ahlneck C, Zografi G. Assessment of disorder in crystalline solids. Int J Pharm. 1994;101(3):237–247.10.1016/0378-5173(94)90219-4
  • Vitez IM. Utilization of DSC for pharmaceutical crystal form quantitation. J Therm Anal Calorim. 2004;78(1):33–45.10.1023/B:JTAN.0000042151.60566.0f
  • Van den Mooter G, Wuyts M, Blaton N, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12(3):261–269.10.1016/S0928-0987(00)00173-1
  • Bronlund J, Paterson T. Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders. Int Dairy J. 2004;14(3):247–254.10.1016/S0958-6946(03)00176-6
  • Phillips EM. An approach to estimate the amorphous content of pharmaceutical powders using calorimetry with no calibration standards. Int J Pharm. 1997;149(2):267–271.10.1016/S0378-5173(96)04812-0
  • Gombás Á, Szabó-Révész P, Kata M, et al. Quantitative determination of crystallinity of α-lactose monohydrate by DSC. J Therm Anal Calorim. 2002;68(2):503–510.10.1023/A:1016039819247
  • Fix I, Steffens KJ. Quantifying low amorphous or crystalline amounts of alpha‐lactose‐monohydrate using x‐ray powder diffraction, near‐infrared spectroscopy, and differential scanning calorimetry. Drug Dev Ind Pharm. 2004;30(5):513–523.10.1081/DDC-120037482
  • De Meuter P, Rahier H, Van Mele B. The use of modulated temperature differential scanning calorimetry for the characterisation of food systems. Int J Pharm. 1999;192(1):77–84.10.1016/S0378-5173(99)00274-4
  • Coleman NJ, Craig DQM. Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis. Int J Pharm. 1996;135(1–2):13–29.10.1016/0378-5173(95)04463-9
  • Magoń A, Wurm A, Schick C, et al. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochim Acta. 2014;589:183–196.
  • Górska A, Ostrowska-Ligęza E, Szulc K, et al. A differential scanning calorimetric study of β-lactoglobulin and vitamin D3 complexes. J Therm Anal Calorim. 2012;110(1):473–477.10.1007/s10973-012-2322-6
  • Islam M, Sherrell R, Langrish T. An investigation of the relationship between glass transition temperatures and the crystallinity of spray-dried powders. Drying Technol. 2010;28(3):361–368.10.1080/07373931003641586
  • Imtiaz-Ul-Islam M, Langrish TAG. Comparing the crystallization of sucrose and lactose in spray dryers. Food Bioprod Process. 2009;87(2):87–95.10.1016/j.fbp.2008.09.003
  • Liu P, Yu L, Liu H, Chen L, Li L. Glass transition temperature of starch studied by a high-speed DSC. Carbohydr Polym. 2009;77(2):250–253.10.1016/j.carbpol.2008.12.027
  • Liu P, Yu L, Wang X, et al. Glass transition temperature of starches with different amylose/amylopectin ratios. J Cereal Sci. 2010;51(3):388–391.10.1016/j.jcs.2010.02.007
  • Du X, MacNaughtan B, Mitchell JR. Quantification of amorphous content in starch granules. Food Chem. 2011;127(1):188–191.10.1016/j.foodchem.2011.01.022
  • Lappalainen M, Pitkänen I, Harjunen P. Quantification of low levels of amorphous content in sucrose by hyperDSC. Int J Pharm. 2006;307(2):150–155.10.1016/j.ijpharm.2005.09.029
  • Hurtta M, Pitkänen I. Quantification of low levels of amorphous content in maltitol. Thermochim Acta. 2004;419(1–2):19–29.10.1016/j.tca.2004.01.024
  • Gabbott P, Clarke P, Mann T, et al. A high-sensitivity, high-speed DSC technique: measurement of amorphous lactose. Am Lab. 2003;35(16):17–23.
  • Saunders M, Podluii K, Shergill S, et al. The potential of high speed DSC (Hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples. Int J Pharm. 2004;274(1–2):35–40.10.1016/j.ijpharm.2004.01.018
  • Saklatvala R, Saunders M, Fitzpatrick S, et al. A comparison of high speed differential scanning calorimetry (Hyper-DSC) and modulated differential scanning calorimetry to detect the glass transition of polyvinylpyrrolidone: the effect of water content and detection sensitivity in powder mixtures (a model formulation). J Drug Del Sci Technol. 2005;15(4):257–260.10.1016/S1773-2247(05)50046-7
  • Teunou E, Fitzpatrick J. Effect of relative humidity and temperature on food powder flowability. J Food Eng. 1999;42(2):109–116.10.1016/S0260-8774(99)00087-4
  • Jouppila K, Kansikas J, Roos YH. Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose. Biotechnol Prog. 1998;14(2):347–350.10.1021/bp980010s
  • Roos YH. Importance of glass transition and water activity to spray drying and stability of dairy powders. Le Lait. 2002;82(4):475–484.10.1051/lait:2002025
  • Levoguer CL, Williams DR. The characterisation of pharmaceutical materials by dynamic vapour sorption. Dyn Vapour Sorption. Application Note. 1999;101:1–5.
  • Sheokand S, Modi SR, Bansal AK. Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials. J Pharm Sci. 2014;103(11):3364–3376.10.1002/jps.24160
  • Hogan SE, Buckton G. The application of near infrared spectroscopy and dynamic vapor sorption to quantify low amorphous contents of crystalline lactose. Pharm Res. 2001;18(1):112–116.10.1023/A:1011091113734
  • Vollenbroek J, Hebbink GA, Ziffels S, et al. Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms. Int J Pharm. 2010;395(1–2):62–70.10.1016/j.ijpharm.2010.04.035
  • Buckton G, Darcy P. The use of gravimetric studies to assess the degree of crystallinity of predominantly crystalline powders. Int J Pharm. 1995;123(2):265–271.10.1016/0378-5173(95)00083-U
  • Mackin L, Zanon R, Park JM, et al. Quantification of low levels (<10%) of amorphous content in micronised active batches using dynamic vapour sorption and isothermal microcalorimetry. Int J Pharm. 2002;231(2):227–236.10.1016/S0378-5173(01)00881-X
  • Craig DQC, Kett, VL, Murphy, J. R., et al. The measurement of small quantities of amorphous material-should we be considering the rigid amorphous fraction? Pharm Res. 2001;18(8):1081–1082.10.1023/A:1010999615450
  • Burnett DJ, Thielmann F, Booth J. Determining the critical relative humidity for moisture-induced phase transitions. Int J Pharm. 2004;287(1–2):123–133.10.1016/j.ijpharm.2004.09.009
  • Buckton G, Darcy P. Water mobility in amorphous lactose below and close to the glass transition temperature. Int J Pharm. 1996;136(1–2):141–146.10.1016/0378-5173(96)04503-6
  • Hunter NE, Frampton CS, Craig DQ, et al. The use of dynamic vapour sorption methods for the characterisation of water uptake in amorphous trehalose. Carbohydr Res. 2010;345(13):1938–1944.10.1016/j.carres.2010.06.011
  • Yu X, Kappes S, Bello-Perez LA, Schmidt S. Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument. J Food Sci. 2008;73(1):E25–E35.
  • Grimsey IM, Feeley JC, York P. Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. J Pharm Sci. 2002;91(2):571–583.10.1002/jps.10060
  • Newell HE, Buckton G, Butler DA, et al. The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose. Pharm Res. 2001;18(5):662–666.10.1023/A:1011089511959
  • Mohammadi-Jam S, Waters KE. Inverse gas chromatography applications: a review. Adv Colloid Interface Sci. 2014;212:21–44.10.1016/j.cis.2014.07.002
  • Planinšek O, Buckton G. Inverse gas chromatography: considerations about appropriate use for amorphous and crystalline powders. J Pharm Sci. 2003;92(6):1286–1294.10.1002/jps.10394
  • Newell HE, Buckton G, Butler DA, et al. The use of inverse phase gas chromatography to study the change of surface energy of amorphous lactose as a function of relative humidity and the processes of collapse and crystallisation. J Pharm Sci. 2001;217(1–2):45–56.10.1016/S0378-5173(01)00589-0
  • Das S, Larson I, Young P, et al. Understanding lactose behaviour during storage by monitoring surface energy change using inverse gas chromatography. Dairy Sci Technol. 2010;90(2–3):271–285.10.1051/dst/2009051
  • Buckton G, Ambarkhane A, Pincott K. The use of inverse phase gas chromatography to study the glass transition temperature of a powder surface. Pharm Res. 2004;21(9):1554–1557.10.1023/B:PHAM.0000041447.15874.f7
  • Ambarkhane AV, Pincott K, Buckton G. The use of inverse gas chromatography and gravimetric vapour sorption to study transitions in amorphous lactose. Int J Pharm. 2005;294(1–2):129–135.10.1016/j.ijpharm.2005.01.034
  • Laws DD, Bitter H-ML, Jerschow A. Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed. 2002;41(17):3096–3129.10.1002/1521-3773(20020902)41:17<>1.0.CO;2-C
  • Taday PF. Applications of terahertz spectroscopy to pharmaceutical sciences. Phil Trans R Soc London A. 1815;2004(362):351–364.
  • Saitão H, Ando I, Naito A. Solid state NMR spectroscopy for biopolymers: principles and applications. Dordrecht: Springer; 2006.
  • Dybowski C, Bai S, Bramer SV. Solid-state nuclear magnetic resonance. Anal Chem. 2002;74(12):2713–2718.10.1021/ac0201981
  • Tishmack PA, Bugay DE, Byrn SR. Solid-state nuclear magnetic resonance spectroscopy-pharmaceutical applications. J Pharm Sci. 2003;92(3):441–474.10.1002/jps.10307
  • Bertocchi F, Paci M. Applications of high-resolution solid-state NMR spectroscopy in food science. J Agric Food Chem. 2008;56(20):9317–9327.10.1021/jf8019776
  • Geppi M, Mollica G, Borsacchi S, et al. Solid-state NMR studies of pharmaceutical systems. Appl Spectro Rev. 2008;43(3):202–302.10.1080/05704920801944338
  • Xu Y, Southern SA, Szell PM, et al. The role of solid-state nuclear magnetic resonance in crystal engineering. Cryst Eng Comm. 2016;18:5236–5252.
  • Berendt RT, Sperger DM, Munson EJ, et al. Solid-state NMR spectroscopy in pharmaceutical research and analysis. TrAC Trends Anal Chem. 2006;25(10):977–984.10.1016/j.trac.2006.07.006
  • Gidley MJ, Bociek SM. Molecular organization in starches: a carbon 13CP/MAS NMR study. J Am Chem Soc. 1985;107(24):7040–7044.10.1021/ja00310a047
  • Atichokudomchai N, Varavinit S, Chinachoti P. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr Polym. 2004;58(4):383–389.10.1016/j.carbpol.2004.07.017
  • Paris M, Bizot H, Emery J, et al. Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy. Carbohydr Polym. 1999;39(4):327–339.10.1016/S0144-8617(99)00022-3
  • Gustafsson C, Lennholm H, Iversen T, et al. Comparison of solid-state NMR and isothermal microcalorimetry in the assessment of the amorphous component of lactose. Int J Pharm. 1998;174(1–2):243–252.10.1016/S0378-5173(98)00272-5
  • Park S, Johnson DK, Ishizawa CI, et al. Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose. 2009;16(4):641–647.10.1007/s10570-009-9321-1
  • Wawer I, Wolniak M, Paradowska K. Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple. Solid State Nucl Magn Reson. 2006;30(2):106–113.10.1016/j.ssnmr.2006.05.001
  • Lefort R, De Gusseme A, Willart J-F, et al. Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball-milling of trehalose. Int J Pharm. 2004;280(1–2):209–219.10.1016/j.ijpharm.2004.05.012
  • Ek R, Alderborn G, Nyström C. Particle analysis of microcrystalline cellulose: Differentiation between individual particles and their agglomerates. Int J Pharm. 1994;111(1):43–50.10.1016/0378-5173(94)90400-6
  • Larkin P. Infrared and Raman spectroscopy; principles and spectral interpretation. Oxford: Elsevier; 2011.
  • Schrader B. Infrared and Raman spectroscopy: methods and applications. Weinheim:Wiley; 2008.
  • Gremlich H-U, Yan B. Infrared and Raman spectroscopy of biological materials. New York (NY): Marcel Dekker Inc.; 2000.
  • Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, Editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 10815–10837.
  • Smith GD, Clark RJH. Raman microscopy in archaeological science. J Arch Sci. 2004;31(8):1137–1160.10.1016/j.jas.2004.02.008
  • Murphy BM, Prescott SW, Larson I. Measurement of lactose crystallinity using Raman spectroscopy. J Pharm Biomed Anal. 2005;38(1):186–190.10.1016/j.jpba.2004.12.013
  • Susi H, Ard JS. Laser-raman spectra of lactose. Carbohydr Res. 1974;37(2):351–354.10.1016/S0008-6215(00)82924-9
  • Kirk JH, Dann SE, Blatchford CG. Lactose: a definitive guide to polymorph determination. Int J Pharm. 2007;334(1–2):103–114.10.1016/j.ijpharm.2006.10.026
  • Langkilde FW, Sjöblom J, Tekenbergs-Hjelte L, et al. Quantitative FT-Raman analysis of two crystal forms of a pharmaceutical compound. J Pharm Biomed Anal. 1997;15(6):687–696.10.1016/S0731-7085(96)01906-1
  • McGoverin CM, Clark ASS, Holroyd SE, et al. Raman spectroscopic quantification of milk powder constituents. Anal Chim Acta. 2010;673(1):26–32.10.1016/j.aca.2010.05.014
  • Taylor LS, Zografi G. The quantitative analysis of crystallinity using FT-Raman spectroscopy. Pharm Res. 1998;15(5):755–761.10.1023/A:1011979221685
  • Yang DT, Ying YB. Applications of Raman spectroscopy in agricultural products and food analysis: a review. Appl Spectrosc Rev. 2011;46(7):539–560.10.1080/05704928.2011.593216
  • Nørgaard L, Hahn M, Knudsen L, et al. Multivariate near-infrared and Raman spectroscopic quantifications of the crystallinity of lactose in whey permeate powder. Int Dairy J. 2005;15(12):1261–1270.10.1016/j.idairyj.2004.12.009
  • Whiteside PT, Luk SY, Madden-Smith CE, et al. Detection of low levels of amorphous lactose using H/D exchange and FT-Raman spectroscopy. Pharm Res. 2008;25(11):2650–2656.10.1007/s11095-008-9682-4
  • Ehto V-P, Tenho M, Vähä-Heikkilä K, et al, The comparison of seven different methods to quantify the amorphous content of spray dried lactose. Powder Technol, 2006;167(2):85–93.
  • Van Eerdenbrugh B, Taylor LS. Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. Int J Pharm. 2011;417(1–2):3–16.10.1016/j.ijpharm.2010.12.011
  • Wartewig S, Neubert RHH. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv Drug Del Rev. 2005;57(8):1144–1170.10.1016/j.addr.2005.01.022
  • Stephenson GA, Forbes RA, Reutzel-Edens SM. Characterization of the solid state: quantitative issues. Adv Drug Del Rev. 2001;48(1):67–90.10.1016/S0169-409X(01)00099-0
  • Heinz A, Strachan CJ, Gordon KC, et al. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. J Pharm Pharm. 2009;61(8):971–988.10.1211/jpp.61.08.0001
  • Mathlouthi M, Cholli AL, Koenig JL. Spectroscopic study of the structure of sucrose in the amorphous state and in aqueous solution. Carbohydr Res. 1986;147(1):1–9.
  • Andersen FA, Brečević L. Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem Scand. 1991;45(10):1018–1024.10.3891/acta.chem.scand.45-1018
  • Listiohadi Y, Hourigan JA, Sleigh RW, et al. Thermal analysis of amorphous lactose and α-lactose monohydrate. Dairy Sci Technol. 2009;89(1):43–67.10.1051/dst:2008027
  • Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose-structure and characterization. Cellul Chem Technol. 2011;45(1):13–21.
  • Ottenhof M-A, MacNaughtan W, Farhat IA. FTIR study of state and phase transitions of low moisture sucrose and lactose. Carbohydr Res. 2003;338(21):2195–2202.10.1016/S0008-6215(03)00342-2
  • van Soest JJ, Tournois H, de Wit D, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res. 1995;279:201–214.10.1016/0008-6215(95)00270-7
  • Strachan CJ, Rades T, Newnham DA, et al. Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials. Chem Phys Lett. 2004;390(1–3):20–24.10.1016/j.cplett.2004.03.117
  • Strachan CJ, Taday PF, Newnham DA, et al. Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J Pharm Sci. 2005;94(4):837–846.10.1002/jps.20281
  • Walther M, Fischer BM, Jepsen PU. Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem Phys. 2003;288(2–3):261–268.10.1016/S0301-0104(03)00031-4
  • Taday PF, Bradley I, Arnone D, et al. Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J Pharm Sci. 2003;92(4):831–838.10.1002/jps.10358
  • Shen YC. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm. 2011;417(1–2):48–60.10.1016/j.ijpharm.2011.01.012
  • Zeitler JA, Taday PF, Pepper M, et al. Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy. J Pharm Sci. 2007;96(10):2703–2709.10.1002/jps.20908
  • Smith G, Hussain A, Bukhari NI, et al. Quantification of residual crystallinity of ball-milled, commercially available, anhydrous β-lactose by differential scanning calorimetry and terahertz spectroscopy. J Therm Anal Calorim. 2015;121(1):327–333.10.1007/s10973-015-4469-4
  • Duncan-Hewitt WC, Grant DJW. True density and thermal expansivity of pharmaceutical solids - comparison of methods and assessment of crystallinity. Int J Pharm. 1986;28(1):75–84.10.1016/0378-5173(86)90149-3
  • Nara S. On the relationship between specific volume and crystallinity of starch. Starch-Stärke. 1979;31(3):73–75.10.1002/(ISSN)1521-379X
  • Hasegawa S, Hamaura T, Furuyama N, et al. Uniformity and physical states of troglitazone in solid dispersions determined by electron probe microanalysis and microthermal analysis. Int J Pharm. 2004;280(1–2):39–46.10.1016/j.ijpharm.2004.04.024
  • Barbosa-Cánovas GV, Juliano P. Physical and chemical properties of food powders. In: Onwulata C, Editor. Encapsulated and powdered foods. Boca Raton (FL): Dekker/CRC Press; 2005. p. 39–71.10.1201/CRCFOOSCITEC
  • Yang W, Owens DE, Williams RO. Pharmaceutical cryogenic technologies. In: Williams III RO, Watts AB, Miller DA, Editors. Formulating poorly water soluble drugs. New York (NY): Springer: 2012. p. 443–500.10.1007/978-1-4614-1144-4
  • Savolainen M, Kogermann K, heinz A, et al. Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy. Eur J Pharm Biopharm. 2009;71(1):71–79.10.1016/j.ejpb.2008.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.