891
Views
2
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences

, , , &
Pages 1125-1135 | Received 01 Dec 2016, Accepted 03 Feb 2017, Published online: 28 Feb 2017

References

  • Pfeifer M, Kugler KG, Sandve SR, et al. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science. 2014;345(6194):1250091.10.1126/science.1250091
  • The international wheat genome sequencing consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788.
  • Semenov MA, Halford NG. Halford: identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot. 2009;60(10):2791–2804.10.1093/jxb/erp164
  • Saad ASI, Li X, Li HP, et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci. 2013;203–204:33–40.10.1016/j.plantsci.2012.12.016
  • Rong W, Qi L, Wang AY, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J. 2014;12:468–479.10.1111/pbi.2014.12.issue-4
  • Chinnusamy V, Zhu JH, Zhu JK. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12(10):444–451.10.1016/j.tplants.2007.07.002
  • Maienschein-Cline M, Dinner AR, Hlavacek WS, et al. Improved predictions of transcription factor binding sites using physicochemical features of DNA. Nucleic Acids Res. 2012;40(22):e175.10.1093/nar/gks771
  • Qin YX, Wang MC, Tian YC, et al. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep. 2012;39:7183–7192.10.1007/s11033-012-1550-y
  • Kobayashi F, Maeta E, Terashima A, et al. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot. 2008;59(4):891–905.10.1093/jxb/ern014
  • Machens F, Becker M, Umrath F, et al. Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Mol Biol. 2014;84:371–385.10.1007/s11103-013-0136-y
  • Romeuf I, Tessier D, Dardevet M, et al. wDBTF: an integrated database resource for studying wheat transcription factor families. BMC Genomics. 2010;11:185.10.1186/1471-2164-11-185
  • Jin JP, Zhang H, Kong L, et al. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucl Acids Res. 2014;42(D1):D1182–D1187.10.1093/nar/gkt1016
  • Chen ZY, Guo XJ, Chen ZX, et al. Genome-wide characterization of developmental stage- and tissue-specific transcription factors in wheat. BMC Genomics. 2015;16:125.10.1186/s12864-015-1313-y
  • Sanchita G, Blessy BM, Sharma A. In silico analysis of putative transcription factor binding sites in differentially expressed genes: study of the turnover of TFBSs under salt stress responsiveness in solanaceae family. Plant Omics J. 2013;6(4):278–285.
  • Guo WW, Yang H, Liu YQ, et al. The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene. Plant J. 2015;84:347–359.10.1111/tpj.13003
  • Shewry PR. Wheat. J Exp Bot. 2009;60:1537–1553.10.1093/jxb/erp058
  • Ma XL, Xin ZY, Wang ZQ, et al. Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol. 2015;15:21.10.1186/s12870-015-0413-9
  • Yin LL, Xue HW. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell. 2012;24:1049–1065.10.1105/tpc.111.094854
  • Giraud E, Ng S, Carrie C, et al. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell. 2010;22:3921–3934.10.1105/tpc.110.074518
  • Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res. 2004;32:W249–W252.10.1093/nar/gkh372
  • Naika M, Shameer K, Mathew OK, et al. STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol. 2013;54(2):e8.10.1093/pcp/pcs185
  • Mathelier A, Wasserman WW. The next generation of transcription factor binding site prediction. PLOS Comput Biol. 2013;9(9):e1003214.10.1371/journal.pcbi.1003214
  • Koudritsky M, Domany E. Positional distribution of human transcription factor binding sites. Nucleic Acids Res. 2008;36(21):6795–6805.10.1093/nar/gkn752
  • Mochida K, Yoshida T, Sakurai T, et al. TriFLDB: a database of clustered full-length coding sequences from triticeae with applications to comparative grass genomics. Plant Physiol. 2009;150(3):1135–1146.10.1104/pp.109.138214
  • Schug J. Using TESS to predict transcription factor binding sites in DNA sequence. Current Protoc Bioinfo. 2008:2.6.1–2.6.15.
  • Dong GQ, Ni ZF, Yao YY, et al. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Mol Biol. 2007;63:73–84.
  • Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nature. 2004;5:276–287.
  • Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protoc. 2012;7(3):562–578.10.1038/nprot.2012.016
  • Niu XP, Guiltinan MJ. DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Res. 1994;22(23):4969–4978.10.1093/nar/22.23.4969
  • Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell. 2003;15:1749–1770.10.1105/tpc.013839
  • Xie KB, Wu CQ, Xiong LZ. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 2006;142:280–293.10.1104/pp.106.084475
  • Qin YX, Wang MC, Tian YC, et al. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep. 2012;39:7183–7192.10.1007/s11033-012-1550-y
  • West AG, Shore P, Sharrocks AD. DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending. Mol Cell Biol. 1997;17(5):2876–2887.10.1128/MCB.17.5.2876
  • Ciannamea S, Kaufmann K, Frau M, et al. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. J Exp Bot. 2006;57:3419–3431.10.1093/jxb/erl144
  • Jakoby M, Weisshaar B, Dröge-Laser W, et al. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002;7(3):106–111.10.1016/S1360-1385(01)02223-3
  • Nozawa A, Matsubara Y, Tanaka Y, et al. Construction of a protein library of Arabidopsis transcription factors using a wheat cell-free protein production system and its application for DNA binding analysis. Biosci Biotech Bioch. 2009;73(7):1661–1664.
  • Niu XP, Guiltinan MJ. DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Res. 1994;22(23):4969–4978.10.1093/nar/22.23.4969
  • Nakano T, Fujisawa M, Shima Y, et al. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J Exp Bot. 2014;eru154:1–9.
  • Pandey B, Sharma P, Saini M, et al. Isolation and characterization of dehydration-responsive element-binding factor 2 (DREB2) from Indian wheat (Triticum aestivum L.) cultivars. Aust J Crop Sci. 2014;8(1):44–54.
  • Xu W, Li F, Ling LZ, et al. Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genomics. 2013;14:785.10.1186/1471-2164-14-785
  • Song XM, Li Y, Hou XL. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics. 2013;14:573.10.1186/1471-2164-14-573
  • Kalde M, Barth M, Somssich IE, et al. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact. 2003;16(4):295–305.10.1094/MPMI.2003.16.4.295
  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol. 2010;153:1398–1412.10.1104/pp.110.153593
  • Schommer C, Bresso EG, Spinelli SV, et al. Role of MicroRNA miR319 in plant development. Berlin: Springer; 2012. p. 29–47.10.1007/978-3-642-27384-1
  • Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 1999;18(2):215–222.10.1046/j.1365-313X.1999.00444.x
  • Wang Y, Hu ZL, Yang YX, et al. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters. Int J Mol Sci. 2009;10:116–132.10.3390/ijms10010116
  • Wang BN, Geng SF, Wang D, et al. Characterization of squamosa promoter binding protein-LIKE genes in wheat. J Plant Biol. 2015;58:220–229.10.1007/s12374-015-0105-x
  • He YN, Li W, Lv J, et al. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot. 2011;err389:1–12.
  • Xu ZS, Ni ZY, Liu Li, et al. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics. 2008;280(6):497–508.10.1007/s00438-008-0382-x
  • Swaminathan K, Peterson K, Jack T. The plant B3 superfamily. Trends Plant Sci. 2008;13(12):647–655.10.1016/j.tplants.2008.09.006
  • Yu XF, Li Lei, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J. 2011;65:634–646.10.1111/tpj.2011.65.issue-4
  • Kovalchuk N, Smith J, Bazanova N, et al. Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. J Exp Bot. 2012;63(5):2025–2040.10.1093/jxb/err409
  • Hamant O, Pautot V. Plant development: A TALE story. Comptes rendus Biol. 2010;333(4):371–381.10.1016/j.crvi.2010.01.015
  • Chan RL, Gago GM, Palena CM, et al. Homeoboxes in plant development. Biochimica et Biophysica Acta. 1998;1442(1):1–19.10.1016/S0167-4781(98)00119-5
  • Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol. 2003;3:17.10.1186/1471-2148-3-17
  • Vicente-Carbajosa J, Moose SP, Parsons RL, et al. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Plant Biol. 1997;94:7685–7690.
  • Yanagisawa S, Schmidt RJ. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 1999;17(2):209–214.10.1046/j.1365-313X.1999.00363.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.