800
Views
10
CrossRef citations to date
0
Altmetric
Food & Nutrition Science

Effects of oolonghomobisflavan A on oxidation of low-density lipoprotein

, , , , , , , , & show all
Pages 1569-1575 | Received 24 Jan 2017, Accepted 21 Mar 2017, Published online: 02 May 2017

References

  • Salvayre R, Auge N, Benoist H, et al. Oxidized low-density lipoprotein-induced apoptosis. Biochem Biophys Acta. 2002;1585:213–221.
  • Morita SY. Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biol Pharm Bull. 2016;39:1–24.10.1248/bpb.b15-00716
  • Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–1478.10.1152/physrev.00047.2003
  • Obama T, Kato R, Masuda Y, et al. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics. 2007;7:2132–2141.10.1002/(ISSN)1615-9861
  • Frijhoff J, Winyard PG, Zarkovic N, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23:1144–1170.10.1089/ars.2015.6317
  • Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–355.10.1016/j.cell.2011.04.005
  • Sheibani E, Duncan SE, Kuhn DD, et al. Changes in flavor volatile composition of oolong tea after panning during tea processing. Food Sci Nutr. 2016;4:456–468.10.1002/fsn3.2016.4.issue-3
  • Sae-tan S. Systematic review: hypolipidemic activity of oolong tea polymerized polyphenols. J Health Res. 2016;30:451–459.
  • Yi D, Tan X, Zhao Z, et al. Reduced risk of dyslipidaemia with oolong tea consumption: a population-based study in southern China. Br J Nutr. 2014;111:1421–1429.10.1017/S0007114513003644
  • Nakai M, Fukui Y, Asami S, et al. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem. 2005;53:4593–4598.10.1021/jf047814+
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–1200.10.1038/1811199a0
  • Yang L, Kirikoshi J, Seikomoto S, et al. Effect of bean extract of yabumame (Amphicarpaea bracteata (L.) Fernald subsp. edgeworthii (Benth.) H.Ohashi) on low-density lipoprotein oxidation in vitro. Food Sci Technol Res. 2015;21:589–596.10.3136/fstr.21.589
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.
  • Arai H, Terao J, Abdalla DS, et al. Coulometric detection in high performance liquid chromatographic analysis of cholesteryl ester hydroperoxides. Free Radic Biol Med. 1996;20:365–371.10.1016/0891-5849(96)02062-X
  • Fukunaga K, Yoshida M, Nakazono N. A simple, rapid, highly sensitive and reproducible quantification method for plasma malondialdehyde by high-performance liquid chromatography. Biomed Chromatogr. 1998;12:300–303.10.1002/(ISSN)1099-0801
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.10.1038/227680a0
  • Arai H, Berlett BS, Chock PB, et al. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein. Proc Natl Acad Sci USA. 2005;102:10472–10477.10.1073/pnas.0504685102
  • Xie B, Shi H, Chen Q, et al. Antioxidant properties of fractions and polyphenol constituents from green, oolong and black teas. Proc Natl Sci Counc Repub China B. 1993;17:77–84.
  • Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem. 1995;43:27–32.10.1021/jf00049a007
  • Hsu TF, Kusumoto A, Abe K, et al. Polyphenol-enriched oolong tea increases fecal lipid excretion. Eur J Clin Nutr. 2006;60:1330–1336.10.1038/sj.ejcn.1602464
  • Komatsu T, Nakamori M, Komatsu K, et al. Oolong tea increases energy metabolism in Japanese females. J Med Invest. 2003;50:170–175.
  • Toyoda-Ono Y, Yoshimura M, Nakai M, et al. Suppression of postprandial hypertriglyceridemia in rats and mice by oolong tea polymerized polyphenols. Biosci Biotechnol Biochem. 2007;71:971–976.10.1271/bbb.60635
  • Zhu QY, Hackman RM, Ensunsa JL, et al. Antioxidative activities of oolong tea. J Agric Food Chem. 2002;50:6929–6934.10.1021/jf0206163
  • Hashimoto F, Ono M, Masuoka C, et al. Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols. Biosci Biotechnol Biochem. 2003;67:396–401.10.1271/bbb.67.396
  • Hashimoto F, Nonaka G, Nishioka I. Tannins and related compounds. XC. 8-C-ascorbyl (-)-epigallocatechin 3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong tea.(3). Chem Pharm Bull. 1989;37:3255–3263.10.1248/cpb.37.3255
  • Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82:1807–1821.10.1016/j.bcp.2011.07.093
  • Vogiatzi G, Tousoulis D, Stefanadis C. The role of oxidative stress in atherosclerosis. Hellenic J Cardiol. 2009;50:402–409.
  • Frei B, Gaziano JM. Content of antioxidants, preformed lipid hydroperoxides, and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and -independent oxidation. J Lipid Res. 1993;34:2135–2145.
  • Hevonoja T, Pentikäinen MO, Hyvönen MT, et al. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta. 2000;1488:189–210.10.1016/S1388-1981(00)00123-2
  • Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41:1819–1828.
  • Miura S, Watanabe J, Tomita T, et al. The inhibitory effects of tea polyphenols (flavan-3-ol derivatives) on Cu2+ mediated oxidative modification of low density lipoprotein. Biol Pharm Bull. 1994;17:1567–1572.10.1248/bpb.17.1567
  • Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003;25:207–218.10.1007/s00726-003-0011-2
  • Gieseg SP, Pearson J, Firth CA. Protein hydroperoxides are a major product of low density lipoprotein oxidation during copper, peroxyl radical and macrophage-mediated oxidation. Free Radic Res. 2003;37:983–991.10.1080/10715760310001603612
  • Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids. 2003;25:221–226.10.1007/s00726-003-0012-1
  • Uchida K, Toyokuni S, Nishikawa K, et al. Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry. 1994;33:12487–12494.10.1021/bi00207a016
  • Itakura K, Oya-Ito T, Osawa T, et al. Detection of lipofuscin-like fluorophore in oxidized human low-density lipoprotein. 4-hydroxy-2-nonenal as a potential source of fluorescent chromophore. FEBS Lett. 2000;473:249–253.10.1016/S0014-5793(00)01539-8
  • Weisgraber KH, Rall SC. Human apolipoprotein B-100 heparin-binding sites. J Biol Chem. 1987;262:11097–11103.
  • Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arterioscler Thromb Vasc Biol. 1989;9:21–32.10.1161/01.ATV.9.1.21
  • Krisko A, Piantanida I, Kveder M, et al. The effect of heparin on structural and functional properties of low density lipoproteins. Biophys Chem. 2006;119:234–239.10.1016/j.bpc.2005.09.011
  • Oorni K, Pentikainen MO, Annila A, et al. Oxidation of low density lipoprotein particles decreases their ability to bind to human aortic proteoglycans: dependence on oxidative modification of the lysine residues. J Biol Chem. 1997;272:21303–21311.10.1074/jbc.272.34.21303
  • Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620–1624.10.1073/pnas.87.4.1620
  • Rubbo H, O’Donnell V. Nitric oxide, peroxynitrite and lipoxygenase in atherogenesis: mechanistic insights. Toxicology. 2005;208:305–317.10.1016/j.tox.2004.11.019
  • Guy RA, Maguire GF, Crandall I, et al. Characterization of peroxynitrite-oxidized low density lipoprotein binding to human CD36. Atherosclerosis. 2001;155:19–28.10.1016/S0021-9150(00)00524-4
  • Lomonosova EE, Kirsch M, Rauen U, et al. The critical role of Hepes in SIN-1 cytotoxicity, peroxynitrite versus hydrogen peroxide. Free Radic Biol Med. 1998;24:522–528.10.1016/S0891-5849(97)00295-5
  • Trostchansky A, Batthyany C, Botti H, et al. Formation of lipid-protein adducts in low-density lipoprotein by fluxes of peroxynitrite and its inhibition by nitric oxide. Arch Biochem Biophys. 2001;395:225–232.10.1006/abbi.2001.2583
  • Radi R. Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res. 2013;46:550–559.10.1021/ar300234c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.