1,619
Views
9
CrossRef citations to date
0
Altmetric
Award Review

Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibioticsFootnote

Pages 1663-1669 | Received 06 Jun 2017, Accepted 28 Jun 2017, Published online: 26 Jul 2017

References

  • Mizuno T. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 1997;4:161–168.10.1093/dnares/4.2.161
  • Gao R, Stock AM. Biological insights from structures of two-component proteins. Ann Rev Microbiol. 2009;63:133–154.10.1146/annurev.micro.091208.073214
  • Eguchi Y, Utsumi R. Introduction to bacterial signal transduction networks. In: Utsumi R, editor. Bacterial signal transduction: networks and drug targets. New York (NY): Springer; 2008. p. 1–6.
  • Oshima T, Aiba H, Masuda Y, et al. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol. 2002;46:281–291.10.1046/j.1365-2958.2002.03170.x
  • Vescovi EG, Soncini FC, Groisman EA. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell. 1996;84:165–174.10.1016/S0092-8674(00)81003-X
  • Groisman EA. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol. 2001;183:1835–1842.10.1128/JB.183.6.1835-1842.2001
  • Soncini FC, Vescovi EG, Groisman EA. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol. 1995;177:4364–4371.10.1128/jb.177.15.4364-4371.1995
  • Soncini FC, Vescovi EG, Solomon F, et al. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol. 1996;178:5092–5099.10.1128/jb.178.17.5092-5099.1996
  • Groisman EA, Heffron F, Solomon F. Molecular genetic analysis of the Escherichia coli phoP locus. J Bacteriol. 1992;174:486–491.10.1128/jb.174.2.486-491.1992
  • Kasahara M, Nakata A, Shinagawa H. Molecular analysis of the Escherichia coli phoP-phoQ operon. J Bacteriol. 1992;174:492–498.10.1128/jb.174.2.492-498.1992
  • Groisman EA, Heffron F. Regulation of Salmonella virulence by two-component regulatory systems. In: Hoch JA, Silhavy TJ, editors. Two-component signal transduction. Washington (DC): ASM Press; 1995. p. 319–332.10.1128/9781555818319
  • Kato A, Tanabe H, Utsumi R. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+-responsive promoters. J Bacteriol. 1999;181:5516–5520.
  • Minagawa S, Ogasawara H, Kato A, et al. Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol. 2003;185:3696–3702.10.1128/JB.185.13.3696-3702.2003
  • Utsumi R, Katayama S, Taniguchi M, et al. Newly identified genes involved in the signal transduction of Esherichia coli K-12. Gene. 1994;140:73–77.10.1016/0378-1119(94)90733-1
  • Perraud AL, Weiss V, Gross R. Signaling pathways in two-component phosphorelay systems. Trends Microbiol. 1999;7:115–120.10.1016/S0966-842X(99)01458-4
  • Utsumi R, Kawamoto K, Yamazaki K, et al. Characterization of the signal transduction via EvgS and EvgA in Escherichia coli. J Gen Appl Microbiol. 1996;42:155–162.10.2323/jgam.42.155
  • Itou J, Eguchi Y, Utsumi R. Molecular mechanism of transcriptional cascade initiated by the EvgS/EvgA system in Escherichia coli K-12. Biosci Biotechnol Biochem. 2009;73:870–878.10.1271/bbb.80795
  • Eguchi Y, Utsumi R. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. J Bacteriol. 2014;196:3140–3149.10.1128/JB.01742-14
  • Kato A, Ohnishi H, Yamamoto K, et al. Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Biosci Biotechnol Biochem. 2000;64:1203–1209.10.1271/bbb.64.1203
  • Eguchi Y, Oshima T, Mori H, et al. Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli. Microbiology. 2003;149:2819–2828.10.1099/mic.0.26460-0
  • Masuda N, Church GM. Regulation network of acid resistance genes in Escherichia coli. Mol Microbiol. 2003;48:699–712.10.1046/j.1365-2958.2003.03477.x
  • Eguchi Y, Okada T, Minagawa S, et al. Signal transduction cascade between EvgA/EvgS and PhoP/PhoQ two-component systems of Escherichia coli. J Bacteriol. 2004;186:3006–3014.10.1128/JB.186.10.3006-3014.2004
  • Mitrophanov AY, Groisman EA. Signal integration in bacterial two-component regulatory systems. Genes Dev. 2008;22:2601–2611.10.1101/gad.1700308
  • Eguchi Y, Itou J, Yamane M, et al. B1500, a small membrane protein,connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc Natl Acad Sci USA. 2007;104:18712–18717.
  • Kato A, Groisman EA. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev. 2004;18:2302–2313.10.1101/gad.1230804
  • Eguchi Y, Ishii E, Yamane M, et al. The connector SafA interacts with the multi-sensing domain of PhoQ in Escherichia coli. Mol Microbiol. 2012;85:299–313.10.1111/mmi.2012.85.issue-2
  • Eguchi Y, Ishii E, Hata K, et al. Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J Bacteriol. 2011;193:1222–1228.10.1128/JB.01124-10
  • Bougdour A, Cunning C, Baptiste PJ, et al. Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol. 2008;68:298–313.10.1111/mmi.2008.68.issue-2
  • Loewen PC, Hu B, Strutinsky J, et al. Regulation in the RpoS regulon of Escherichia coli. Can J Microbiol. 1998;44:707–717.10.1139/cjm-44-8-707
  • Ogasawara H, Hasegawa A, Kanda E, et al. Genomic SELEX search for target promoters under the control of the PhoQP-RstBA signal relay cascade. J Bacteriol. 2007;189:4791–4799.10.1128/JB.00319-07
  • Castanie-Cornet MP, Cam K, Bastiat B, et al. Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res. 2010;38:3546–3554.10.1093/nar/gkq097
  • Johnson MD, Burton NA, Gutierrez B, et al. RcsB Is required for inducible acid Resistance in Escherichia coli and acts at gadE-dependent and -independent promoters. J Bacteriol. 2011;193:3653–3656.10.1128/JB.05040-11
  • Watanabe T, Okada A, Gotoh Y, et al. Inhibitors targeting two-component signal transduction. In: Utsumi R, editor. Bacterial signal transduction: networks and drug targets. New York (NY): Springer; 2008. p. 229–236.10.1007/978-0-387-78885-2
  • Dubrac S, Bisicchia P, Devine KM, et al. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol. 2008;70:1307–1322.10.1111/mmi.2008.70.issue-6
  • Yamamoto K, Kitayama T, Minagawa S, et al. Antibacterial agents that inhibit histidine protein kinase YycG of Bacillus subtilis. Biosci Biotechnol Biochem. 2001;65:2306–2310.10.1271/bbb.65.2306
  • Watanabe T, Hashimoto Y, Umemoto Y, et al. Molecular characterization of the essential response regulator protein YycF in Bacillus subtilis. J Mol Microbiol Biotechnol. 2003;6:155–163.
  • Tomomori C, Tanaka T, Dutta R, et al. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol. 1999;6:729–734.
  • Watanabe T, Igarashi M, Okajima T, et al. Isolation and characterization of signermycin B, an antibiotic that targets the dimerization domain of histidine kinase WalK. Antimicrob Agents Chemother. 2012;56:3657–3663.10.1128/AAC.06467-11
  • Okajima T, Doi A, Okada A, et al. Response regulator YycF essential for bacterial growth: X-ray crystal structure of the DNA-binding domain and its PhoB-like DNA recognition motif. FEBS Lett. 2008;582:3434–3438.10.1016/j.febslet.2008.09.007
  • Doi A, Okajima T, Gotoh Y, et al. X-ray crystal structure of the dna-binding domain of response regulator WalR essential to the cell viability of Staphylococcus aureus and interaction with target DNA. Biosci Biotechnol Biochem. 2010;74:1901–1907.10.1271/bbb.100307
  • Bisicchia P, Noone D, Lioliou E, et al. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol. 2007;65:180–200.10.1111/mmi.2007.65.issue-1
  • Howell A, Dubrac S, Andersen KK, et al. Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol. 2003;49:1639–1655.10.1046/j.1365-2958.2003.03661.x
  • Dubrac S, Boneca IG, Poupel O, et al. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Stapylococcus aureus. J Bacteriol. 2007;189:8257–8269.10.1128/JB.00645-07
  • Okada A, Gotoh Y, Watanabe T, et al. Targeting two-component signal transduction: a novel drug discovery system. Methods Enzymol. 2007;422:386–395.10.1016/S0076-6879(06)22019-6
  • Okada A, Igarashi M, Okajima T, et al. Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth. J Antibiot. 2010;63:89–94.10.1038/ja.2009.128
  • Gotoh Y, Eguchi Y, Watanabe T, et al. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol. 2010;13:232–239.10.1016/j.mib.2010.01.008
  • Eguchi Y, Kubo N, Matsunaga H, et al. Development of an antivirulence drug against streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob Agents Chemother. 2011;55:1475–1484.10.1128/AAC.01646-10
  • Hilliard JJ, Goldschmidt RM, Licata L, et al. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother. 1999;43:1693–1699.
  • Macielag MJ, Goldschmidt R. Inhibitors of bacterial two-component signaling systems. Expert Opin Invest Drugs. 2000;9:2351–2369.10.1517/13543784.9.10.2351
  • Stephenson K, Hoch JA. Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem. 2004;11:765–773.10.2174/0929867043455765
  • Igarashi M, Watanabe T, Hashida T, et al. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J Antibiot. 2013;66:459–464.10.1038/ja.2013.33
  • Fakhruzzaman M, Inukai Y, Yanagida Y, et al. Study on in vivo effects of bacterial histidine kinase inhibitor, Waldiomycin, in Bacillus subtilis and Staphylococcus aureus. J Gen Appl Microbiol. 2015;61:177–184.10.2323/jgam.61.177
  • Eguchi Y, Okajima T, Tochio N, et al. Angucycline antibiotic waldiomycin recognizes common structural motif conserved in bacterial histidine kinases. J Antibiot. 2017;70:251–258.10.1038/ja.2016.151
  • Furuta E, Yamamoto K, Tatebe D, et al. Targeting protein homodimerization: a novel drug discovery system. FEBS Lett. 2005;579:2065–2070.10.1016/j.febslet.2005.02.056
  • Gotoh Y, Doi A, Furuta E, et al. Novel antibacterial compounds specifically targeting the essential WalR response regulator. J Antibiot. 2010;63:127–134.10.1038/ja.2010.4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.