591
Views
1
CrossRef citations to date
0
Altmetric
Organic Chemistry

Deuterium incorporation experiments from (3R)- and (3S)-[3-2H]leucine into characteristic isoprenoidal lipid-core of halophilic archaea suggests the involvement of isovaleryl-CoA dehydrogenase

ORCID Icon &
Pages 2062-2070 | Received 24 Apr 2017, Accepted 22 Aug 2017, Published online: 25 Sep 2017

References

  • Kates M. Membrane-Lipids of extreme halophiles–biosynthesis, function and evolutionary significance. Experientia. 1993;49(12):1027–1036.10.1007/BF01929909
  • Kates M. Diether and tetraether phospholipids and glycolipids as molecular markers for archaebacteria (archaea). In: Eganhouse RP, editor. ACS symposium series 671 molecular markers in environmental geochemistry. Washington (DC): American Chemical Society; 1977. p. 35–51.
  • Foster IS, King PL, Hyde BC, et al. Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: astrobiological implications for Mars. Planet Space Sci. 2010;58(4):599–615.10.1016/j.pss.2009.08.009
  • Fendrihan S, Musso M, Stan-Lotter H. Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extra-terrestrial samples. J Raman Spectrosc. 2009;40(12):1996–2003.10.1002/jrs.v40:12
  • Morita M, Yamauchi N, Eguchi T, et al. Structural diversity of the membrane core lipid of extreme halophiles. Biosci Biotechnol Bioch. 1998;62(3):596–598.10.1271/bbb.62.596
  • Kamekura M, Kates M. Structural diversity of membrane lipids in members of Halobacteriaceae. Biosci Biotechnol Bioch. 1999;63(6):969–972.10.1271/bbb.63.969
  • Fresch G, Rohmer M. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem. 1988;175(2):405–411.
  • Bach TJ. Some new aspects of isoprenoid biosynthesis in plants—A review. Lipids. 1995;30(3):191–202.10.1007/BF02537822
  • Rohmer M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem. 2003;75(2–3):375–387.
  • Kuzuyama T, Seto H. Diversity of the biosynthesis of the isoprene units. Nat Prod Rep. 2003;20(2):171–183.10.1039/b109860 h
  • Kuzuyama T, Hemmi H, Takahashi S. Mevalonate pathway in bacteria and archaea. In: Townsend CA, Ebizuka Y, editors. Comprehensive natural products II. Chemistry and biology. Vol. 1, Natural products structural diversity-I. Secondary metabolites; Organization and biosynthesis. Oxford:Elsevier; 2010. p. 493–516.10.1016/B978-008045382-8.00014-9
  • De Rosa M, Gambacorta A, Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev. 1986;50(1):70–80.
  • VanNice JC, Skaff DA, Wyckoff GJ, et al. Expression in Haloferax volcanii of 3-hydroxy-3-methylglutaryl coenzyme A synthase facilitates isolation and characterization of the active form of a key enzyme required for polyisoprenoid cell membrane biosynthesis in halophilic archaea. J Bacteriol. 2013;195(17):3854–3862.10.1128/JB.00485-13
  • VanNice JC, Skaff DA, Keightley A, et al. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of terminal enzyme reactions in an archaeal alternate mevalonate pathway. J Bacteriol. 2014;196(5):1055–1063.10.1128/JB.01230-13
  • Grochowski LL, Xu H, White RH. Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol. 2006;188(9):3192–3198.10.1128/JB.188.9.3192-3198.2006
  • Azami Y, Hattori A, Nishimura H, et al. (R)-Mevalonate 3-phosphate is an intermediate of the mevalonate pathway in Thermoplasma acidophilum. J Biol Chem. 2014;289(23):15957–15967.10.1074/jbc.M114.562686
  • Suga T, Hirata T, Shishibori T, et al. The first proof of the biosynthesis of isoprenoid from amino acid in higher plant. The incorporation of L-Leucine into linalool. Chem Lett. 1974;3(2):189–192.10.1246/cl.1974.189
  • Suga T, Hirata T, Tange K. Biosynthesis of isoprenoid from amino acid in higher plant. Incorporation of L-leucine and L-valine into geraniol and citronellol. Chem Lett. 1975;4(3):243–246.
  • Anastasis P, Freer I, Overton K, et al. The role of leucine in isoprenoid metabolism-incorporation of [3-13C]leucine and of [2-3H,4-14C]-β,β-dimethylacrylic acid into phytosterols by tissue-cultures of Andrographis paniculata. Chem Commun. 1985;(3):148–149.10.1039/C39850000148
  • Stillway LW, Weigand DA, Riefler JF. Leucine and isoleucine as in vitro precursors for lipid biosynthesis by rat aorta. Lipids. 1977;12:1012–1016.10.1007/BF02533327
  • Domenech CE, Giordano W, Avalos J, et al. Separate compartments for the production of sterols, carotenoids and gibberellins in Gibberella fujikuroi. Eur J Biochem. 1996;239(3):720–725.10.1111/ejb.1996.239.issue-3
  • Ginger ML, Prescott MC, Reynolds DG, et al. Utilization of leucine and acetate as carbon source for sterol and fatty acid biosynthesis by old and new world Leishmania species, Endotrypanum monterogeii and Trypanosoma cruzi. Eur J Biochem. 2000;267(9):2555–2566.10.1046/j.1432-1327.2000.01261.x
  • Ginger ML, Chance ML, Sadler IH, et al. The biosynthetic incorporation of the intact leucine skeleton into sterol by the Trypanosomatid Leishmania mexicana. J Biol Chem. 2001;276(15):11674–11682.10.1074/jbc.M006850200
  • Mahmud T, Bode HB, Silakowski B, et al. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria. J Biol Chem. 2002;277(36):32768–32774.10.1074/jbc.M205222200
  • Dickschat JS, Bode HB, Mahmud T, et al. A novel type of geosmin biosynthesis in myxobacteria. J Org Chem. 2005;70(13):5174–5182.10.1021/jo050449 g
  • Bode HB, Ring MW, Schwar G, et al. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase in involved in biosynthesis of isovaleryl-CoA in the Myxobacterium Myxococcus xanthus during fruiting body formation. J Bacteriol. 2006;188(18):6524–6528.10.1128/JB.00825-06
  • Li Y, Luxenburger E, et al. An alternative isovaleryl CoA biosynthetic pathway involving a previously unknown 3-methylglutaconyl CoA decarboxylase. Angew Chem Int Ed. 2013;52(4):1304–1308.10.1002/anie.201207984
  • Yamauchi N. The pathway of leucine to mevalonate in halophilic archaea: efficient incorporation of leucine into isoprenoidal lipid with the involvement of isovaleryl-CoA dehydrogenase in Halobacterium salinarum. Biosci Biotech Bioch. 2010;74(2):443–446.10.1271/bbb.90814
  • Ikeda Y, Tanaka K. Mutant isovaleryl-CoA dehydrogenase in isovaleric acidemia cells: assay of activity and molecular characterization. Methods Enzymol. 1988;166:155–166.10.1016/S0076-6879(88)66022-8
  • Ikeda Y, Tanaka K. Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria. J Biol Chem. 1983;258:1077–1085.
  • Willard JM, Reinard T, Mohsen AW, et al. Cloning of genomic and cDNA for mouse isovaleryl-CoA dehydrogenase (IVD) and evolutionary comparison to other known IVDs. Gene. 2001;270(1–2):253–257.10.1016/S0378-1119(01)00466-8
  • Reinard T, Janke V, Willard J, et al. Cloning of a gene for an acyl-CoA dehydrogenase from Pisum sativum L. and purification and characterization of its product as an isovaleryl-CoA dehydrogenase. J Biol Chem. 2000;275(43):33738–33743.10.1074/jbc.M004178200
  • Faivre-Nitschke SE, Couée I, Vermel M, et al. Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. Eur J Biochem. 2001;268(5):1332–1339.10.1046/j.1432-1327.2001.01999.x
  • Förster-Fromme K, Jendrossek D. Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of Pseudomonas aeruginosa and the importance of liu genes for a functional catabolic pathway of methyl-branched compounds. FEMS Microbiol Lett. 2008;286(1):78–84.10.1111/fml.2008.286.issue-1
  • Aberhart DJ, Tann C-H. Substrate stereochemistry of isovaleryl-CoA dehydrogenase elimination of the 2-pro-R hydrogen in biotin-deficient rats. Bioorg Chem. 1981;10(2):200–205.10.1016/0045-2068(81)90023-7
  • Aberhart DJ, Finocchiaro G, Ikeda Y, et al. Substrate stereochemistry of isovaleryl-CoA dehydrogenase. II. Steric course of C-3 hydrogen elimination. Bioorg Chem. 1986;14(2):170–175.10.1016/0045-2068(86)90027-1
  • Swigoňová Z, Mohsen A-W, Vockley J. Acyl-CoA dehydrogenases: dynamic history of protein family evolution. J Mol Evol. 2009;69(2):176–193.10.1007/s00239-009-9263-0
  • Caldwell CG, Bondy SS. A convenient synthesis of enantiomerically pure (2S, 3S)- or (2R,3R)-3-hydroxyleucine. Synthesis. 1990;1990(1):34–36.
  • Sunazuka T, Nagamitsu T, Tanaka H, et al. An efficient asymmetric synthesis of the four stereoisomers of 3-hydroxyleucine. Tetrahedron Lett. 1993;34(28):4447–4448.10.1016/0040-4039(93)88055-N
  • Ishikawa H, Sone H, Kigoshi H, et al. Enantioselective total synthesis of doliculide, a potent cytotoxic cyclodepsipeptide of marine origin and structure-cytotoxicity relationships of synthetic doliculide congeners. Tetrahedron. 1994;50(45):12853–12882.
  • Modandi A, Gessner M, Günther C, et al. (S)-O-Acetyllactyl chloride – a versatile chiral auxiliary in stereodifferentiation of enantiomeric flavor components. J. High Resol Chrom. 1987;10:67–70.
  • Hill RK, Abächerli C, Hagishita S. Synthesis of (2S, 4S)- and (2S, 4R)-[5,5,5-2H3]leucine from (R)-pulegone. Can J Chem. 1993;72:110–113.
  • Yamauchi N, Endoh S. Improved isotopic deuterium labeling at the diastereotopic methyl group of leucine: a synthetic route to (4S)-and (4R)-[5-2H1]leucine. Biosci Biotech Bioch. 2006;70(1):276–278.10.1271/bbb.70.276
  • Messner B, Eggerer H, Cornforth JW, et al. Substrate stereochemistry of the hydroxymethylglutaryl-CoA lyase and methylglutaconyl-CoA hydratase reactions. Eur J Biochem. 1975;53(1):255–264.10.1111/ejb.1975.53.issue-1
  • Mack M, Liesert M, Zschocke J, et al. 3-Methylglutaconyl-CoA hydratase from Acinetobacter sp. Arch Microbiol. 2006;185(4):297–306.10.1007/s00203-006-0095-7
  • Barkley SJ, Desai SB, Poulter CD. Proton exchange in type II isopentenyl diphosphate isomerase. Org Lett. 2004;6(26):5019–5021.10.1021/ol0477273
  • Kao C, Kittleman W, Zhang H, et al. Stereochemical analysis of isopentenyl diphosphate isomerase type II from Staphylococcus aureus using chemically synthesized (S)- and (R)-[2-2H]isopentenyl diphosphates. Org Lett. 2005;7(25):5677–5680.10.1021/ol0524050
  • Cornforth JW, Cornforth RH, Donninger C, et al. Studies on the biosynthesis of cholesterol. XIX. Steric course of hydrogen eliminations and of C-C bond formations in squalene biosynthesis. Proc R Soc Lond B Biol Sci. 1966;163:492–514.10.1098/rspb.1966.0004
  • Cornforth JW, Cornforth RH, Popjác G, et al. Studies on the biosynthesis of cholesterol XX. Steric course of decarboxylation of 5-pyrophosphomevalonate and of the carbon to carbon bond formation in the biosynthesis of farnesyl pyrophosphate. J Biol Chem. 1966;241(17):3970–3987.
  • Clark JK, Jones PS, Palin R, et al. Asymmetric synthesis of N-3 substituted phenoxypropyl piperidine benzimidazol-2-one derivatives, potent and selective NOP agonists. Tetrahedron. 2008;64(14):3119–3126.10.1016/j.tet.2008.01.125
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J Biochem Physiol. 1959;37(8):911–917.10.1139/o59-099
  • Tornabene TG, Kates M, Gelpi E, et al. Occurrence of squalene, di- and tetrahydrosqualenes, and vitamin MK8 in an extremely halophilic bacterium. Halobacterium cutirubrum. J Lipid Res. 1969;10(3):294–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.