711
Views
0
CrossRef citations to date
0
Altmetric
Special Issue: Recent advances in isoprenoid studies

Utilization of an intermediate of the methylerythritol phosphate pathway, (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate, as the prenyl donor substrate for various prenyltransferases

, , & ORCID Icon
Pages 993-1002 | Received 25 Jul 2017, Accepted 04 Oct 2017, Published online: 01 Dec 2017

References

  • Heider SAE, Peters-Wendisch P, Wendisch VF, et al. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol. 2014;98:4355–4368.10.1007/s00253-014-5693-8
  • Dummer AM, Bonsall JC, Cihla JB, et al. Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol. 2011;193:5658–5667.10.1128/JB.05376-11
  • Yang Y, Yatsunami R, Ando A, et al. Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol. 2015;197:1614–1623.10.1128/JB.02523-14
  • Krubasik P, Takaichi S, Maoka T, et al. Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Arch Microbiol. 2001;176:217–223.10.1007/s002030100315
  • Netzer R, Stafsnes MH, Andreassen T, et al. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases. J Bacteriol. 2010;192:5688–5699.10.1128/JB.00724-10
  • Tao L, Yao H, Cheng Q. Genes from a Dietzia sp for synthesis of C40 and C50 β-cyclic carotenoids. Gene. 2007;386:90–97.10.1016/j.gene.2006.08.006
  • Krubasik P, Kobayashi M, Sandmann G. Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Eur J Biochem. 2001;268:3702–3708.10.1046/j.1432-1327.2001.02275.x
  • Collu G, Unver N, Peltenburg-Looman AM, et al. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 2001;508:215–220.10.1016/S0014-5793(01)03045-9
  • Höfer R, Dong L, André F, et al. Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metab Eng. 2013;20:221–232.10.1016/j.ymben.2013.08.001
  • DeBarber AE, Bleyle LA, Roullet JB, et al. ω-Hydroxylation of farnesol by mammalian cytochromes P450. Biochim Biophys Acta. 2004;1682:18–27.10.1016/j.bbalip.2004.01.003
  • Johnston JB, Kells PM, Podust LM, et al. Biochemical and structural characterization of CYP124: a methyl-branched lipid ω-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2009;106:20687–20692.10.1073/pnas.0907398106
  • Hayakawa H, Sobue F, Motoyama K, et al. Identification of enzymes involved in the mevalonate pathway of Flavobacterium johnsoniae. Biochem Biophys Res Commun. 2017;487:702–708.10.1016/j.bbrc.2017.04.120
  • Ito T, Hemmi H, Kataoka K, et al. A novel zinc-dependent D-serine dehydratase from Saccharomyces cerevisiae. Biochem J. 2008;409:399–406.10.1042/BJ20070642
  • Hemmi H, Ohnuma S, Nagaoka K, et al. Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis. J Biochem (Tokyo). 1998;123:1088–1096.10.1093/oxfordjournals.jbchem.a022047
  • Peralta-Yahya PP, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel. Nat Commun. 2011;2:483.
  • Heider SA, Peters-Wendisch P, Beekwilder J, et al. IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum. FEBS J. 2014;281:4906–4920.10.1111/febs.13033
  • Wallrapp FH, Pan JJ, Ramamoorthy G, et al. Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily. Proc Natl Acad Sci USA. 2013;110:E1196–E1202.10.1073/pnas.1300632110
  • Blanchard L, Karst F. Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae. Gene. 1993;125:185–189.10.1016/0378-1119(93)90326-X
  • Hemmi H, Shibuya K, Takahashi Y, et al. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermoacidophilic archaeon Sulfolobus solfataricus. Molecular cloning and characterization of a membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal ether-linked membrane lipids. J Biol Chem. 2004;279:50197–50203.
  • Ogawa T, Yoshimura T, Hemmi H. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: different role, different evolution. Biochem Biophys Res Commun. 2010;393:16–20.10.1016/j.bbrc.2010.01.063
  • S-I Ohnuma, Nakazawa T, Hemmi H, et al. Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J Biol Chem. 1996;271:10087–10095.
  • Fujii H, Koyama T, Ogura K. Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim Biophys Acta. 1982;712:716–718.
  • Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science. 1999;285:1573–1576.10.1126/science.285.5433.1573
  • Sakakibara H, Kasahara H, Ueda N, et al. Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA. 2005;102:9972–9977.10.1073/pnas.0500793102
  • Sugawara H, Ueda N, Kojima M, et al. Structural insight into the reaction mechanism and evolution of cytokinin biosynthesis. Proc Natl Acad Sci USA. 2008;105:2734–2739.10.1073/pnas.0707374105
  • Ueda N, Kojima M, Suzuki K, et al. Agrobacterium tumefaciens tumor morphology root plastid localization and preferential usage of hydroxylated prenyl donor is important for efficient gall formation. Plant Physiol. 2012;159:1064–1072.10.1104/pp.112.198572
  • Cheng W, Li W. Structural insights into ubiquinone biosynthesis in membranes. Science. 2014;343:878–881.10.1126/science.1246774
  • Huang H, Levin EJ, Liu S, et al. Structure of a membrane-embedded prenyltransferase homologous to UBIAD1. PLoS Biol. 2014;12:e1001911.10.1371/journal.pbio.1001911
  • Koyama T, Obata S, Osabe M, et al. Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: molecular cloning, sequence determination, overproduction, and purification. J Biochem. 1993;113:355–263.10.1093/oxfordjournals.jbchem.a124051
  • S-I Ohnuma, Suzuki M, Nishino T. Archaebacterial ether-linked lipid biosynthetic gene. Expression cloning, sequencing, and characterization of geranylgeranyl-diphosphate synthase. J Biol Chem. 1994;269:14792–14797.
  • Tachibana A, Yano Y, Otani S, et al. Novel prenyltransferase gene encoding farnesylgeranyl diphosphate synthase from a hyperthermophilic archaeon, Aeropyrum pernix. Molecularevolution with alteration in product specificity. Eur J Biochem. 2000;267:321–328.
  • Lu YP, Liu HG, Liang PH. Different reaction mechanisms for cis- and trans-prenyltransferases. Biochem Biophys Res Commun. 2009;379:351–355.10.1016/j.bbrc.2008.12.061
  • Poulter CD, Argyle JC, Mash EA. Letter: Prenyltransferase. New evidence for an ionization-condensation-elimination mechanism with 2-fluorogeranyl pyrophosphate. J Am Chem Soc. 1977;99:957–959.10.1021/ja00445a056
  • Sanchez VM, Crespo A, Gutkind JS, et al. Investigation of the catalytic mechanism of farnesyl pyrophosphate synthase by computer simulation. J Phys Chem B. 2006;110:18052–18057.10.1021/jp063099q
  • Thulasiram HV, Erickson HK, Poulter CD. A common mechanism for branching, cyclopropanation, and cyclobutanation reactions in the isoprenoid biosynthetic pathway. J Am Chem Soc. 2008;130:1966–1971.10.1021/ja0771282
  • Bernardet JF, Segers P, Vancanneyt M, et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Sys Bacteriol. 1996;46:128–148.
  • Hiseni A, Arends IW, Otten LG. Biochemical characterization of the carotenoid 1,2-hydratases (CrtC) from Rubrivivax gelatinosus and Thiocapsa roseopersicina. Appl Microbiol Biotechnol. 2011;91:1029–1036.10.1007/s00253-011-3324-1
  • Lang HP, Cogdell RJ, Takaichi S, et al. Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol. 1995;177:2064–2073.10.1128/jb.177.8.2064-2073.1995
  • Steiger S, Mazet A, Sandmann G. Heterologous expression, purification, and enzymatic characterization of the acyclic carotenoid 1,2-hydratase from Rubrivivax gelatinosus. Arch Biochem Biophys. 2003;414:51–58.10.1016/S0003-9861(03)00099-7
  • Graham JE, Bryant DA. The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. Strain PCC 7002. J Bacteriol. 2009;191:3292–3300.10.1128/JB.00050-09
  • Sun Z, Shen S, Wang C, et al. A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus. Microbiology. 2009;155:2775–2783.10.1099/mic.0.027623-0
  • Blasco F, Kauffmann I, Schmid RD. CYP175A1 from Thermus thermophilus HB27, the first β-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol. 2004;64:671–674.10.1007/s00253-003-1529-7
  • Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA. 2006;103:3474–3479.10.1073/pnas.0511207103
  • Tian L, Musetti V, Kim J, et al. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activity. Proc Natl Acad Sci USA. 2004;101:402–407.10.1073/pnas.2237237100
  • Tian L, DellaPenna D. Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys. 2004;430:22–29.10.1016/j.abb.2004.02.003
  • Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem. 2004;279:41866–41872.10.1074/jbc.M406337200
  • Qi J, Asano T, Jinno M, et al. Characterization of a phytophthora mating hormone. Science. 2005;309:1828.10.1126/science.1114756

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.