1,817
Views
56
CrossRef citations to date
0
Altmetric
Award Reviews

Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability

Pages 207-215 | Received 04 Nov 2017, Accepted 07 Dec 2017, Published online: 08 Jan 2018

References

  • Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry. 2009;70:1739–1745.10.1016/j.phytochem.2009.08.023
  • Barron D, Ibrahim RK. Isoprenylated flavonoids – a survey. Phytochemistry. 1996;43:921–982.10.1016/S0031-9422(96)00344-5
  • Shen G, Huhman D, Lei Z, et al. Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus. Plant Physiol. 2012;159:70–80.10.1104/pp.112.195271
  • Munakata R, Inoue T, Koeduka T, et al. Molecular cloning and characterization of a geranyl diphosphate-specific aromatic prenyltransferase from lemon. Plant Physiol. 2014;166:80–90.10.1104/pp.114.246892
  • Li H, Ban Z, Qin H, et al. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol. 2015;167:650–659.10.1104/pp.114.253682
  • Akashi T, Sasaki K, Aoki T, et al. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol. 2009;149:683–693.
  • Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health!. Phytochemistry. 2004;65:1317–1330.10.1016/j.phytochem.2004.04.025
  • Wu Y, Luo Q, Sun C, et al. Chemical constituents contained in Desmodium caudatum. Zhongguo Zhong Yao Za Zhi. 2012;37:1788–1792.
  • Koeduka T, Shitan N, Kumano T, et al. Production of prenylated flavonoids in tomato fruits expressing a prenyltransferase gene from Streptomyces coelicolor A3(2). Plant Biol (Stuttg). 2011;13:411–415.
  • Sugiyama A, Linley PJ, Sasaki K, et al. Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases. Metab Eng. 2011;13:629–637.10.1016/j.ymben.2011.07.003
  • Stevens JF, Miranda CL, Frei B, et al. Inhibition of peroxynitrite-mediated LDL oxidation by prenylated flavonoids: the alpha, beta-unsaturated keto functionality of 2′-hydroxychalcones as a novel antioxidant pharmacophore. Chem. Res. Toxicol. 2003;16:1277–1286.10.1021/tx020100d
  • Jung HA, Jeong DM, Chung HY, et al. Re-evaluation of the antioxidant prenylated flavonoids from the roots of Sophora flavescens. Biol Pharm Bull. 2008;31:908–915.10.1248/bpb.31.908
  • Pinto C, Duque AL, Rodríguez-Galdón B, et al. Xanthohumol prevents carbon tetrachloride-induced acute liver injury in rats. Food Chem Toxicol. 2012;50:3405–3412.10.1016/j.fct.2012.07.035
  • Simons R, Gruppen H, Bovee TF, et al. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct. 2012;3:810–827.10.1039/c2fo10290 k
  • Djiogue S, Njamen D, Halabalaki M, et al. Estrogenic properties of naturally occurring prenylated isoflavones in U2OS human osteosarcoma cells: structure-activity relationships. J Steroid Biochem Mol Biol. 2010;120:184–191.10.1016/j.jsbmb.2010.04.014
  • Wei Q, Zhang J, Hong G, et al. Icariin promotes osteogenic differentiation of rat bone marrow stromal cells by activating the ERalpha-Wnt/beta-catenin signaling pathway. Biomed Pharmacother. 2016;84:931–939.10.1016/j.biopha.2016.09.107
  • Kim DC, Yoon CS, Quang TH, et al. Prenylated flavonoids from Cudrania tricuspidata suppress lipopolysaccharide-induced neuroinflammatory activities in BV2 microglial cells. Int J Mol Sci. 2016;17:255.10.3390/ijms17020255
  • Han AR, Kang YJ, Windono T, et al. Prenylated flavonoids from the heartwood of Artocarpus communis with inhibitory activity on lipopolysaccharide-induced nitric oxide production. J Nat Prod. 2006;69:719–721.10.1021/np0600346
  • Peluso MR, Miranda CL, Hobbs DJ, et al. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2). Planta Med. 2010;76:1536–1543.10.1055/s-0029-1241013
  • Hošek J, Toniolo A, Neuwirth O, et al. Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. J Nat Prod. 2013;76:1586–1591.
  • Rullah K, Mohd Aluwi MF, Yamin BM, et al. Inhibition of prostaglandin E(2) production by synthetic minor prenylated chalcones and flavonoids: synthesis, biological activity, crystal structure, and in silico evaluation. Bioorg Med Chem Lett. 2014;24:3826–3834.10.1016/j.bmcl.2014.06.061
  • Hisanaga A, Mukai R, Sakao K, et al. Anti-inflammatory effects and molecular mechanisms of 8-prenyl quercetin. Mol Nutr Food Res. 2016;60:1020–1032.10.1002/mnfr.201500871
  • Akihisa T, Motoi T, Seki A, et al. Cytotoxic activities and anti-tumor-promoting effects of microbial transformation products of prenylated chalcones from Angelica keiskei. Chem Biodivers. 2012;9:318–330.10.1002/cbdv.v9.2
  • Venturelli S, Burkard M, Biendl M, et al. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition. 2016;32:1171–1178.10.1016/j.nut.2016.03.020
  • Sasaki H, Kashiwada Y, Shibata H, et al. Prenylated flavonoids from Desmodium caudatum and evaluation of their anti-MRSA activity. Phytochemistry. 2012;82:136–142.10.1016/j.phytochem.2012.06.007
  • Grienke U, Richter M, Walther E, et al. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci Rep. 2016;6:252.10.1038/srep27156
  • Lee YM, Hsieh KH, Lu WJ, et al. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), prevents platelet activation in human platelets. Evid Based Complement Alternat Med. 2012;2012:852362.
  • Kim SJ, Son KH, Chang HW, et al. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol Pharm Bull. 2003;26:1348–1350.10.1248/bpb.26.1348
  • Son JK, Park JS, Kim JA, et al. Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity. Planta Med. 2003;69:559–561.
  • Arung ET, Shimizu K, Tanaka H, et al. 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus. Fitoterapia. 2010;81:640–643.10.1016/j.fitote.2010.03.011
  • Arung ET, Shimizu K, Kondo R. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells. Chem Biodivers. 2007;4:2166–2171.10.1002/(ISSN)1612-1880
  • Sun H, Li Y, Zhang X, et al. Synthesis, alpha-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones. Bioorg Med Chem Lett. 2015;25:4567–4571.10.1016/j.bmcl.2015.08.059
  • Kim AY, Lee CG, Lee DY, et al. Enhanced antioxidant effect of prenylated polyphenols as Fyn inhibitor. Free Radic Biol Med. 2012;53:1198–1208.10.1016/j.freeradbiomed.2012.06.039
  • Kretzschmar G, Zierau O, Wober J, et al. Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. J Steroid Biochem Mol Biol. 2010;118:1–6.10.1016/j.jsbmb.2009.08.005
  • van de Schans MG, Ritschel T, Bovee TF, et al. Involvement of a hydrophobic pocket and helix 11 in determining the modes of action of prenylated flavonoids and isoflavonoids in the human estrogen receptor. ChemBioChem. 2015;16:2668–2677.10.1002/cbic.201500343
  • Ming LG, Lv X, Ma XN, et al. The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro. Endocrinology. 2013;154:1202–1214.10.1210/en.2012-2086
  • Mukai R, Horikawa H, Lin PY, et al. 8-prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice. Am J Physiol Regul Integr Comp Physiol. 2016;311:R1022–R1031.10.1152/ajpregu.00521.2015
  • Mukai R, Horikawa H, Fujikura Y, et al. Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice. PLoS ONE. 2012;7:e45048.10.1371/journal.pone.0045048
  • Day AJ, Gee JM, DuPont MS, et al. Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol. 2003;65:1199–1206.10.1016/S0006-2952(03)00039-X
  • Mullen W, Graf BA, Caldwell ST, et al. Determination of flavonol metabolites in plasma and tissues of rats by HPLC-radiocounting and tandem mass spectrometry following oral ingestion of [2-(14)C]quercetin-4′-glucoside. J Agric Food Chem. 2002;50:6902–6909.10.1021/jf020598p
  • Murota K, Terao J. Quercetin appears in the lymph of unanesthetized rats as its phase II metabolites after administered into the stomach. FEBS Lett. 2005;579:5343–5346.10.1016/j.febslet.2005.08.060
  • Takumi H, Mukai R, Ishiduka S, et al. Tissue distribution of hesperetin in rats after a dietary intake. Biosci Biotechnol Biochem. 2011;75:1608–1610.10.1271/bbb.110157
  • Bieger J, Cermak R, Blank R, et al. Tissue distribution of quercetin in pigs after long-term dietary supplementation. J Nutrition. 2008;138:1417–1420.
  • Mukai R, Satsu H, Shimizu M, et al. Inhibition of P-glycoprotein enhances the suppressive effect of kaempferol on transformation of the aryl hydrocarbon receptor. Biosci Biotechnol Biochem. 2009;73:1635–1639.10.1271/bbb.90145
  • Vaidyanathan JB, Walle T. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell Line Caco-2. J Pharmacol Exp Ther. 2003;307:745–752.10.1124/jpet.103.054296
  • Brand W, van der Wel PA, Rein MJ, et al. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metab Dispos. 2008;36:1794–1802.10.1124/dmd.107.019943
  • Aoki F, Nakagawa K, Kitano M, et al. Clinical safety of Licorice Flavonoid Oil (LFO) and pharmacokinetics of glabridin in healthy humans. J Am Coll Nutr. 2007;26:209–218.10.1080/07315724.2007.10719603
  • Bolca S, Li J, Nikolic D, et al. Disposition of hop prenylflavonoids in human breast tissue. Mol Nutr Food Res. 2010;54:S284–S294.10.1002/mnfr.v54.7s
  • Legette L, Karnpracha C, Reed RL, et al. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Mol Nutr Food Res. 2014;58:248–255.10.1002/mnfr.v58.2
  • van Breemen RB, Yuan Y, Banuvar S, et al. Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol Nutr Food Res. 2014;58:1962–1969.10.1002/mnfr.v58.10
  • Zhao H, Fan M, Fan L, et al. Liquid chromatography-tandem mass spectrometry analysis of metabolites in rats after administration of prenylflavonoids from Epimediums. J Chromatogr B. 2010;878:1113–1124.10.1016/j.jchromb.2010.03.023
  • Zhou J, Ma YH, Zhou Z, et al. Intestinal absorption and metabolism of epimedium flavonoids in osteoporosis rats. Drug Metab Dispos. 2015;43:1590–1600.10.1124/dmd.115.064386
  • Xiang C, Qiao X, Wang Q, et al. From single compounds to herbal extract: a strategy to systematically characterize the metabolites of licorice in rats. Drug Metab Dispos. 2011;39:1597–1608.10.1124/dmd.111.038695
  • Martinez SE, Davies NM. Enantiospecific pharmacokinetics of isoxanthohumol and its metabolite 8-prenylnaringenin in the rat. Mol Nutr Food Res. 2015;59:1674–1689.10.1002/mnfr.201500118
  • Nikolic D, Li Y, Chadwick LR, et al. In vitro studies of intestinal permeability and hepatic and intestinal metabolism of 8-prenylnaringenin, a potent phytoestrogen from hops (Humulus lupulus L.). Pharmaceut Res. 2006;23:864–872.10.1007/s11095-006-9902-8
  • Guo J, Nikolic D, Chadwick LR, et al. Identification of human hepatic cytochrome P450 enzymes involved in the metabolism of 8-prenylnaringenin and isoxanthohumol from hops (Humulus lupulus l.). Drug Metab Dispos. 2006;34:1152–1159.10.1124/dmd.105.008250
  • Wu H, Kim M, Han J. Icariin metabolism by human intestinal microflora. Molecules. 2016;21:1158.10.3390/molecules21091158
  • Liu M, Hansen PE, Wang G, et al. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules. 2015;20:754–779.10.3390/molecules20010754
  • Possemiers S, Bolca S, Grootaert C, et al. The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr. 2006;136:1862–1867.
  • Bolca S, Possemiers S, Maervoet V, et al. Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women. Br J Nutr. 2007;98:950–959.
  • Possemiers S, Heyerick A, Robbens V, et al. Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J Agric Food Chem. 2005;53:6281–6288.10.1021/jf0509714
  • Nakamura T, Tokushima T, Kawabata K, et al. Absorption and metabolism of 4-hydroxyderricin and xanthoangelol after oral administration of Angelica keiskei (Ashitaba) extract in mice. Arch Biochem Biophys. 2012;521:71–76.10.1016/j.abb.2012.03.013
  • Zhang SQ, Zhang SZ. Oral absorption, distribution, metabolism, and excretion of icaritin in rats by Q-TOF and UHPLC-MS/MS. Drug Test Anal. 2017;9:1604–1610.10.1002/dta.v9.10
  • Yang W, Yu XC, Chen XY, et al. Pharmacokinetics and tissue distribution profile of icariin propylene glycol-liposome intraperitoneal injection in mice. J Pharm Pharmacol. 2012;64:190–198.10.1111/j.2042-7158.2011.01388.x
  • Mukai R, Fujikura Y, Murota K, et al. Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J Nutr. 2013;143:1558–1564.10.3945/jn.113.176818
  • Konishi Y, Hitomi Y, Yoshida M, et al. Absorption and bioavailability of artepillin C in rats after oral administration. J Agric Food Chem. 2005;53:9928–9933.10.1021/jf051962y
  • Pang Y, Nikolic D, Zhu D, et al. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Mol Nutr Food Res. 2007;51:872–879.10.1002/(ISSN)1613-4133
  • van de Schans MG, Bovee TF, Stoopen GM, et al. Prenylation and backbone structure of flavonoids and isoflavonoids from licorice and hop influence their phase I and II metabolism. J Agric Food Chem. 2015;63:10628–10640.10.1021/acs.jafc.5b04703

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.