813
Views
6
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Comparative effects of ethylene inhibitors on Agrobacterium-mediated transformation of drought-tolerant wild watermelon

, , , , &
Pages 433-441 | Received 24 Nov 2017, Accepted 16 Jan 2018, Published online: 09 Feb 2018

References

  • Bray EA. Plant responses to water deficit. Trends Plant Sci. 1997;2:48–54.10.1016/S1360-1385(97)82562-9
  • Bartels D, Salamini F. Desiccation tolerance in the resurrection plant craterostigma plantagineum. a contribution to the study of drought tolerance at the molecular level. Plant Physiol. 2001;127:1346–1353.10.1104/pp.010765
  • Osakabe Y, Osakabe K, Shinozaki K, et al. Response of plants to water stress. Front Plant Sci. 2014;5:86.
  • Kawasaki S, Miyake C, Kohchi T, et al. Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol. 2000;41:864–873.10.1093/pcp/pcd005
  • Yoshimura K, Masuda A, Kuwano M, et al. Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 2008;49:226–241.
  • Akashi K, Yoshida K, Kuwano M, et al. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta. 2011;233:947–960.10.1007/s00425-010-1341-4
  • Akashi K, Yoshimura K, Nanasato Y, et al. Wild plant resources for studying molecular mechanisms of drought/strong light stress tolerance. Plant Biotechnol. 2008;25:257–263.10.5511/plantbiotechnology.25.257
  • Akashi K, Yoshimura K, Kajikawa M, et al. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon. Biosci Biotechnol Biochem. 2016;80:1907–1916.10.1080/09168451.2016.1191328
  • Kakkar A, Verma VK. Agrobacterium mediated biotransformation. J Appl Pharm Sci. 2011;1:29–35.
  • Komari T, Takakura Y, Ueki J, et al. Bionary vector and super-binary vectors. Methods Mol Biol. 2006;343:15–41.
  • Nonaka S, Yuhashi K-I, Takada K, et al. Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol. 2008;178:647–656.10.1111/nph.2008.178.issue-3
  • Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;S131–151.10.1105/tpc.001768
  • Beyer EM. A potent inhibitor of ethylene action in plants. Plant Physiol. 1976;58:268–271.10.1104/pp.58.3.268
  • Van de Poel B, Van der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci. 2014;5:640.
  • De Block M, De Brouwer D, Tenning P. Transformation of Brassica napus and Brassica oleracea using agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 1989;91:694–701.10.1104/pp.91.2.694
  • Wahlroos T, Susi P, Tylkina L, et al. Agrobacterium-mediated transformation and stable expression of the green fluorescent protein in Brassica rapa. Plant Physiol Biochem. 2003;41:773–778.10.1016/S0981-9428(03)00119-0
  • Takasaki T, Hatakeyama K, Hinata K. Effect of silver nitrate on shoot regeneration and agrobacterium-mediated transformation of turnip (Brassica rapa L. var. rapifera). Plant Biotechnol. 2004;21:225–228.10.5511/plantbiotechnology.21.225
  • Han J-S, Kim CK, Park SH, et al. Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.). Plant Cell Rep. 2005;23:692–698.10.1007/s00299-004-0874-z
  • Kala RG, Abraham V, Sobha S, et al. Agrobacterium-mediated genetic transformation and somatic embryogenesis from leaf callus of Hevea brasiliensis: effect of silver nitrate. In: Sabu A, Augustine A, editors. Prospects in bioscience: addressing the issues. New Delhi: Springer India; 2012. p. 303–315.10.1007/978-81-322-0810-5
  • Ishida Y, Saito H, Hiei Y, et al. Improved protocol for transformation of maize (Zea mays L.) Mediated by Agrobacterium tumefaciens. Plant Biotechnol. 2003;20:57–66.10.5511/plantbiotechnology.20.57
  • Marutani-Hert M, Bowman KD, McCollum GT, et al. A dark incubation period is important for agrobacterium-mediated transformation of mature internode explants of sweet orange, grapefruit, citron, and a citrange rootstock. PLoS One. 2012;7:e47426.10.1371/journal.pone.0047426
  • Nonaka S, Ezura H. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Front Plant Sci. 2014;5:1–7.
  • Honma M, Shimomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 1978;42:1825–1831.
  • McDonnell L, Plett JM, Andersson-Gunneras S, et al. Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Plant. 2009;136:94–109.10.1111/ppl.2009.136.issue-1
  • Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 2005;251:1–7.10.1016/j.femsle.2005.07.030
  • Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169:30–39.10.1016/j.micres.2013.09.009
  • Singh RP, Shelke GM, Kumar A, et al. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol. 6;2015;937.
  • Shaharoona B, Arshad M, Zahir ZA. Effect of plant growth promoting rhizobacteria-containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiate L.). Lett Appl Microbiol. 2004;42:155–159.
  • Zahir ZA, Munir A, Asghar HN, et al. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol. 2008;18:958–963.
  • Saleem M, Arshad M, Hussain S, et al. Perspective of plant growth promoting rhizobacterium (PGPR) containing ACC deaminase is stress agriculture. J Ind Microbiol Biotechnol. 2007;34:635–648.10.1007/s10295-007-0240-6
  • Chen L, Dodd IC, Theobald JC, et al. The Rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via ethylene-dependent pathway. J Exp Bot. 2013;64:1565–1573.10.1093/jxb/ert031
  • Nonaka S, Sugawara M, Minamisawa K, et al. 1-aminocyclopropane-1-carboxylate deaminase enhances agrobacterium tumefaciens-mediated gene transfer into plant cells. Appl Environ Microbiol. 2008;74:2526–2528.10.1128/AEM.02253-07
  • Ntui VO, khan RS, Chin DP, et al. An efficient Agrobacterium tumefaciens-mediated genetic transformation of “Egusi” melon (Colocynthis citrullus L.). Plant Cell Tiss Organ Cult. 2010;103:15–22.10.1007/s11240-010-9748-y
  • Hao Y, Charles TC, Glick BR. ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation frequency of commercial canola cultivars. FEMS Microbiol Lett. 2010;307:185–190.10.1111/fml.2010.307.issue-2
  • Someya T, Nonaka S, Nakamura K, et al. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells. Microbiology Open. 2013;2:873–880.
  • Hood EE, Gelvin SB, Melchers LS, et al. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993;2:208–218.10.1007/BF01977351
  • Akama K, Shiraishi H, Ohta S, et al. Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep. 1992;12:7–11.
  • Akashi K, Morikawa K, Yokota A. Agrobacterium-mediated transformation system for the drought and excess light stress-tolerant wild watermelon (Citrullus lanatus). Plant Biotechnol. 2005;22:13–18.10.5511/plantbiotechnology.22.13
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497.10.1111/ppl.1962.15.issue-3
  • Bassi PK, Spencer MS. Comparative evaluation of photoionization and flame ionization detectors for ethylene analysis. Plant Cell Environ. 1985;8:161–165.10.1111/pce.1985.8.issue-2
  • Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep. 1987;5:387–405.10.1007/BF02667740
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675.10.1038/nmeth.2089
  • Falciatore A, Formiggini F, Bowler C. Reporter genes and in vivo imaging. In: Gilmartin PM, Bowler C, editors. Molecular plant biology. New York: Oxford University Press; 2002, Vol. 2. p. 265–282.
  • Petruzzelli L, Coraggio I, Leubner-Metzger G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta. 2000;211:144–149.10.1007/s004250000274
  • Nakatsuka A, Murachi S, Okunishi H, et al. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 1998;118:1295–1305.10.1104/pp.118.4.1295
  • Ezura H, Yuhashi KI, Yasuta T, et al. Effect of ethylene on Agrobacterium tumefaciens-mediated transfer to melon. Plant Breeding. 2000;119:75–79.10.1046/j.1439-0523.2000.00438.x
  • Kumar V, Parvatam G, Ravishankar GA. AgNO3 – a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol. 2009;12:1–15.
  • Yamasaki S, Manabe K. Application of silver nitrate induces functional bisexual flowers in gynoecious cucumber plants (Cucumis sativus L.). 2011;80:66–75.
  • Custers JBM, Den Nijs APM. Effects of aminoethoxyvinylglycine (AVG), environment, and genotype in overcoming hybridization barriers between Cucumis species. Euphytica. 1986;35:639–647.10.1007/BF00021874
  • Kuvshinov V, Koivu K, Kanerva A, et al. Agrobacterium tumefaciens-mediated transformation of green house-grown Brassica rapa ssp. oleifera. Plant Cell Rep. 1999;18:773–777.10.1007/s002990050659
  • Yevtushenko DP, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry. Plant Cell Rep. 2010;29:211–221.10.1007/s00299-009-0806-z
  • Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol. 2006;17:147–154.10.1016/j.copbio.2006.01.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.