10,242
Views
276
CrossRef citations to date
0
Altmetric
Special Issue: Functional Food Science (REVIEW)

Flavonoid metabolism: the interaction of metabolites and gut microbiota

, &
Pages 600-610 | Received 10 Dec 2017, Accepted 06 Feb 2018, Published online: 05 Mar 2018

References

  • Galleano M, Calabro V, Prince PD, et al. Flavonoids and metabolic syndrome. Ann N Y Acad Sci. 2012;1259:87–94.10.1111/nyas.2012.1259.issue-1
  • Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev. 2016;17(7):573–586.10.1111/obr.v17.7
  • Hertog MG, Feskens EJ, Hollman PC, et al. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993;342(8878):1007–1011.10.1016/0140-6736(93)92876-U
  • Knekt P, Jarvinen R, Reunanen A, et al. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ. 1996;312(7029):478–481.10.1136/bmj.312.7029.478
  • Siasos G, Tousoulis D, Tsigkou V, et al. Flavonoids in atherosclerosis: an overview of their mechanisms of action. Curr Med Chem. 2013;20(21):2641–2660.10.2174/0929867311320210003
  • Sacco SM, Horcajada MN, Offord E. Phytonutrients for bone health during ageing. Br J Clin Pharmacol. 2013;75(3):697–707.10.1111/bcp.12033
  • Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–1080.10.1016/0278-6915(95)00077-1
  • Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–747.10.1093/ajcn/79.5.727
  • Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S–242S.10.1093/ajcn/81.1.230S
  • Morand C, Manach C, Crespy V, et al. Quercetin 3-O-β-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radic Res. 2000;33(5):667–676.10.1080/10715760000301181
  • Day AJ, Mellon F, Barron D, et al. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res. 2001;35(6):941–952.10.1080/10715760100301441
  • Sesink AL, O’Leary KA, Hollman PC. Quercetin glucuronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4′-glucoside. J Nutr. 2001;131(7):1938–1941.10.1093/jn/131.7.1938
  • Day AJ, Gee JM, DuPont MS, et al. Absorption of quercetin-3-glucoside and quercetin-4’-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol. 2003;65(7):1199–1206.10.1016/S0006-2952(03)00039-X
  • Day AJ, Canada FJ, Diaz JC, et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468(2–3):166–170.10.1016/S0014-5793(00)01211-4
  • Day AJ, DuPont MS, Ridley S, et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 1998;436(1):71–75.10.1016/S0014-5793(98)01101-6
  • Walgren RA, Lin JT, Kinne RK, et al. Cellular uptake of dietary flavonoid quercetin 4’-β-glucoside by sodium-dependent glucose transporter SGLT1. J Pharmacol Exp Ther. 2000;294(3):837–843.
  • Murota K, Shimizu S, Chujo H, et al. Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell line caco-2. Arch Biochem Biophys. 2000;384(2):391–397.10.1006/abbi.2000.2123
  • Olthof MR, Hollman PC, Vree TB, et al. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J Nutr. 2000;130(5):1200–1203.10.1093/jn/130.5.1200
  • Tamura A, Shiomi T, Hachiya S, et al. Low activities of intestinal lactase suppress the early phase absorption of soy isoflavones in Japanese adults. Clin Nutr. 2008;27(2):248–253.10.1016/j.clnu.2007.12.001
  • Islam MA, Punt A, Spenkelink B, et al. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models. Mol Nutr Food Res. 2014;58(3):503–515.10.1002/mnfr.201300390
  • Shi J, Zheng H, Yu J, et al. SGLT-1 transport and deglycosylation inside intestinal cells are key steps in the absorption and disposition of calycosin-7-O-β-d-glucoside in rats. Drug Metab Dispos. 2016;44(3):283–296.10.1124/dmd.115.067009
  • Erlund I, Kosonen T, Alfthan G, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol. 2000;56(8):545–553.10.1007/s002280000197
  • Jaganath IB, Mullen W, Lean ME, et al. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic Biol Med. 2009;47(8):1180–1189.10.1016/j.freeradbiomed.2009.07.031
  • Rafii F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites. 2015;5(1):56–73.10.3390/metabo5010056
  • Duda-Chodak A, Tarko T, Satora P, et al. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54(3):325–341.10.1007/s00394-015-0852-y
  • van der Woude H, Boersma MG, Vervoort J, et al. Identification of 14 quercetin phase II mono- and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem Res Toxicol. 2004;17(11):1520–1530.10.1021/tx049826v
  • Hong YJ, Mitchell AE. Identification of glutathione-related quercetin metabolites in humans. Chem Res Toxicol. 2006;19(11):1525–1532.10.1021/tx0601758
  • Piskula MK, Terao J. Accumulation of (−)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. J Nutr. 1998;128(7):1172–1178.10.1093/jn/128.7.1172
  • Mullen W, Edwards CA, Crozier A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr. 2006;96(1):107–116.10.1079/BJN20061809
  • O’Leary KA, Day AJ, Needs PW, et al. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol. 2003;65(3):479–491.10.1016/S0006-2952(02)01510-1
  • Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med. 2010;31(6):446–467.10.1016/j.mam.2010.09.007
  • Clarke DB, Lloyd AS, Botting NP, et al. Measurement of intact sulfate and glucuronide phytoestrogen conjugates in human urine using isotope dilution liquid chromatography-tandem mass spectrometry with [13C3]isoflavone internal standards. Anal Biochem. 2002;309(1):158–172.10.1016/S0003-2697(02)00275-0
  • Nakamura T, Murota K, Kumamoto S, et al. Plasma metabolites of dietary flavonoids after combination meal consumption with onion and tofu in humans. Mol Nutr Food Res. 2014;58(2):310–317.10.1002/mnfr.v58.2
  • Arts IC, Sesink AL, Faassen-Peters M, et al. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br J Nutr. 2004;91(6):841–847.10.1079/BJN20041123
  • Adlercreutz H, Hockerstedt K, Bannwart C, et al. Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). J Steroid Biochem. 1987;27(4–6):1135–1144.10.1016/0022-4731(87)90200-7
  • Chen J, Wang S, Jia X, et al. Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab Dispos. 2005;33(12):1777–1784.
  • Murota K, Terao J. Quercetin appears in the lymph of unanesthetized rats as its phase II metabolites after administered into the stomach. FEBS Lett. 2005;579(24):5343–5346.10.1016/j.febslet.2005.08.060
  • Murota K, Cermak R, Terao J, et al. Influence of fatty acid patterns on the intestinal absorption pathway of quercetin in thoracic lymph duct-cannulated rats. Br J Nutr. 2013;109(12):2147–2153.10.1017/S0007114512004564
  • de Boer VC, Dihal AA, van der Woude H, et al. Tissue distribution of quercetin in rats and pigs. J Nutr. 2005;135(7):1718–1725.10.1093/jn/135.7.1718
  • Hertog MG, Kromhout D, Aravanis C, et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995;155(4):381–386.10.1001/archinte.1995.00430040053006
  • Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339(8808):1523–1526.10.1016/0140-6736(92)91277-F
  • Yamamoto N, Moon JH, Tsushida T, et al. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch Biochem Biophys. 1999;372(2):347–354.10.1006/abbi.1999.1516
  • Murota K, Hotta A, Ido H, et al. Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. J Med Invest. 2007;54(3–4):370–374.10.2152/jmi.54.370
  • Moon JH, Nakata R, Oshima S, et al. Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. Am J Physiol Regul Integr Comp Physiol. 2000;279(2):R461–467.10.1152/ajpregu.2000.279.2.R461
  • Murota K, Mitsukuni Y, Ichikawa M, et al. Quercetin-4′-glucoside is more potent than quercetin-3-glucoside in protection of rat intestinal mucosa homogenates against iron ion-induced lipid peroxidation. J Agric Food Chem. 2004;52(7):1907–1912.10.1021/jf035151a
  • Day AJ, Bao Y, Morgan MRA, et al. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic Biol Med. 2000;29(12):1234–1243.10.1016/S0891-5849(00)00416-0
  • Gimenez-Bastida JA, Gonzalez-Sarrias A, Vallejo F, et al. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels. Food Func. 2016;7(1):118–126.10.1039/C5FO00771B
  • Kinjo J, Tsuchihashi R, Morito K, et al. Interactions of phytoestrogens with estrogen receptors α and β (III). Estrogenic activities of soy isoflavone aglycones and their metabolites isolated from human urine. Biol Pharm Bull. 2004;27(2):185–188.10.1248/bpb.27.185
  • Pugazhendhi D, Watson KA, Mills S, et al. Effect of sulphation on the oestrogen agonist activity of the phytoestrogens genistein and daidzein in MCF-7 human breast cancer cells. J Endocrinol. 2008;197(3):503–515.10.1677/JOE-07-0384
  • Shimoi K, Saka N, Nozawa R, et al. Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos. 2001;29(12):1521–1524.
  • Kawai Y, Nishikawa T, Shiba Y, et al. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008;283(14):9424–9434.10.1074/jbc.M706571200
  • Kawai Y. beta-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents. J Clin Biochem Nutr. 2014;54(3):145–150.10.3164/jcbn.14-9
  • Ishisaka A, Kawabata K, Miki S, et al. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PLoS One. 2013;8(11):e80843.10.1371/journal.pone.0080843
  • Lodi F, Jimenez R, Moreno L, et al. Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis. 2009;204(1):34–39.10.1016/j.atherosclerosis.2008.08.007
  • Kaneko A, Matsumoto T, Matsubara Y, et al. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by β-glucuronidase in macrophages. Immun Inflamm Dis. 2017;5(3):265–279.10.1002/iid3.163
  • Menendez C, Duenas M, Galindo P, et al. Vascular deconjugation of quercetin glucuronide: the flavonoid paradox revealed? Mol Nutr Food Res. 2011;55(12):1780–1790.10.1002/mnfr.v55.12
  • Ikushiro S, Nishikawa M, Masuyama Y, et al. Biosynthesis of drug glucuronide metabolites in the budding Yeast Saccharomyces cerevisiae. Mol Pharm. 2016;13(7):2274–2282.10.1021/acs.molpharmaceut.5b00954
  • Hervert-Hernández D, Goñi I. Dietary polyphenols and human gut microbiota: a review. Food Rev Int. 2011;27(2):154–169.10.1080/87559129.2010.535233
  • Högger P. Nutrition-derived bioactive metabolites produced by gut microbiota and their potential impact on human health. Nutr Med. 2013;1(1):1.
  • Meng X, Sang S, Zhu N, et al. Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol. 2002;15(8):1042–1050.10.1021/tx010184a
  • Takagaki A, Kato Y, Nanjo F. Isolation and characterization of rat intestinal bacteria involved in biotransformation of (−)-epigallocatechin. Arch Microbiol. 2014;196(10):681–695.10.1007/s00203-014-1006-y
  • Appeldoorn MM, Vincken J-P, Aura A-M, et al. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. J Agric Food Chem. 2009;57(3):1084–1092.10.1021/jf803059z
  • Faria A, Fernandes I, Norberto S, et al. Interplay between anthocyanins and gut microbiota. J Agric Food Chem. 2014;62(29):6898–6902.10.1021/jf501808a
  • Konishi Y, Kobayashi S. Microbial metabolites of ingested caffeic acid are absorbed by the monocarboxylic acid transporter (MCT) in intestinal caco-2 cell monolayers. J Agric Food Chem. 2004;52(21):6418–6424.10.1021/jf049560y
  • Tsushida T, Suzuki M. Isolation of flavonoid-glycosides in onion and identification by chemical synthesis of the glycosides (flavonoids in fruits and vegetables part 1) (in Japanese). J Jpn Soc Food Sci Technol. 1995;42(2):100–108.10.3136/nskkk.42.100
  • Mullen W, Rouanet J-M, Auger C, et al. Bioavailability of [2-14C]Quercetin-4ʹ-glucoside in Rats. J Agric Food Chem. 2008;56(24):12127–12137.10.1021/jf802754s
  • Rios LY, Gonthier M-P, Rémésy C, et al. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr. 2003;77(4):912–918.10.1093/ajcn/77.4.912
  • Aura AM, O’Leary KA, Williamson G, et al. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem. 2002;50(6):1725–1730.10.1021/jf0108056
  • Yang J, Qian D, Guo J, et al. Identification of the major metabolites of hyperoside produced by the human intestinal bacteria using the ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. J Ethnopharmacol. 2013;147(1):174–179.10.1016/j.jep.2013.02.029
  • Peng X, Zhang Z, Zhang N, et al. In vitro catabolism of quercetin by human fecal bacteria and the antioxidant capacity of its catabolites. Food Nutr Res. 2014;58(1):23406.10.3402/fnr.v58.23406
  • Gesi M, Santinami A, Ruffoli R, et al. Novel aspects of dopamine oxidative metabolism (confounding outcomes take place of certainties). Pharmacol Toxicol. 2001;89(5):217–224.10.1034/j.1600-0773.2001.d01-151.x
  • Tang Y, Nakashima S, Saiki S, et al. 3,4-Dihydroxyphenylacetic acid is a predominant biologically-active catabolite of quercetin glycosides. Food Res Int. 2016;89(Pt 1):716–723.10.1016/j.foodres.2016.09.034
  • Monagas M, Khan N, Andrés-Lacueva C, et al. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. Br J Nutr. 2009;102(2):201–206.10.1017/S0007114508162110
  • Rechner AR, Kroner C. Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res. 2005;116(4):327–334.10.1016/j.thromres.2005.01.002
  • Verzelloni E, Pellacani C, Tagliazucchi D, et al. Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites. Mol Nutr Food Res. 2011;55(Suppl 1):S35–43.10.1002/mnfr.v55.5s
  • Liu Y, Kurita A, Nakashima S, et al. 3,4-Dihydroxyphenylacetic acid is a potential aldehyde dehydrogenase inducer in murine hepatoma Hepa1c1c7 cells. Biosci Biotechnol Biochem. 2017;81(10):1978–1983.10.1080/09168451.2017.1361809
  • Nakashima S, Liu Z, Yamaguchi Y, et al. A novel tag-free probe for targeting molecules interacting with a flavonoid catabolite. Biochem Biophys Rep. 2016;7:240–245.
  • Heinonen S, Wähälä K, Adlercreutz H. Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6ʹ-OH-O-DMA, and cis-4-OH-equol in human urine by gas chromatography–mass spectroscopy using authentic reference compounds. Anal Biochem. 1999;274(2):211–219.10.1006/abio.1999.4279
  • Setchell KDR, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132(12):3577–3584.10.1093/jn/132.12.3577
  • Atkinson C, Frankenfeld CL, Lampe JW. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med. 2005;230(3):155–170.10.1177/153537020523000302
  • Ingram D, Sanders K, Kolybaba M, et al. Case-control study of phyto-oestrogens and breast cancer. Lancet. 1997;350(9083):990–994.10.1016/S0140-6736(97)01339-1
  • Heinonen S-M, Hoikkala A, Wähälä K, et al. Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects: identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol. 2003;87(4):285–299.10.1016/j.jsbmb.2003.09.003
  • Coldham NG, Darby C, Hows M, et al. Comparative metabolism of genistin by human and rat gut microflora: detection and identification of the end-products of metabolism. Xenobiotica. 2002;32(1):45–62.10.1080/00498250110085809
  • Hur H-G, Rafii F. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett. 2000;192(1):21–25.10.1111/fml.2000.192.issue-1
  • Setchell KD, Clerici C, Lephart ED, et al. S-Equol, a potent ligand for estrogen receptor β, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr. 2005;81(5):1072–1079.10.1093/ajcn/81.5.1072
  • Lundh T. Metabolism of estrogenic isoflavones in domestic animals. Proc Soc Exp Biol Med. 1995;208(1):33–39.10.3181/00379727-208-43828
  • Adlercreutz H, Musey PI, Fotsis T, et al. Identification of lignans and phytoestrogens in urine of chimpanzees. Clin Chim Acta. 1986;158(2):147–154.10.1016/0009-8981(86)90230-5
  • Ohta A, Uehara M, Sakai K, et al. A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J Nutr. 2002;132(7):2048–2054.10.1093/jn/132.7.2048
  • Kelly GE, Joannou GE, Reeder AY, et al. The variable metabolic response to dietary isoflavones in humans. Proc Soc Exp Biol Med. 1995;208(1):40–43.10.3181/00379727-208-43829
  • Lampe JW, Karr SC, Hutchins AM, et al. Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med. 1998;217(3):335–339.10.3181/00379727-217-44241
  • Arai Y, Uehara M, Sato Y, et al. Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol. 2000;10(2):127–135.10.2188/jea.10.127
  • Frankenfeld CL, McTiernan A, Tworoger SS, et al. Serum steroid hormones, sex hormone-binding globulin concentrations, and urinary hydroxylated estrogen metabolites in post-menopausal women in relation to daidzein-metabolizing phenotypes. J Steroid Biochem Mol Biol. 2004;88(4):399–408.10.1016/j.jsbmb.2004.01.006
  • Ueno T, Uchiyama S. Identification of the specific intestinal bacteria capable of metabolising soy isoflavone to equol. Ann Nutr Metab. 2001;45(Suppl):114 (abs).
  • Yokoyama S-i, Oshima K, Nomura I, et al. Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine. J Bacteriol. 2011;193(19):5570–5571.10.1128/JB.05626-11
  • Maruo T, Sakamoto M, Ito C, et al. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol. 2008;58(Pt 5):1221–1227.10.1099/ijs.0.65404-0
  • Tamura M, Tsushida T, Shinohara K. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe. 2007;13(1):32–35.10.1016/j.anaerobe.2006.10.001
  • Wang XL, Kim HJ, Kang SI, et al. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch Microbiol. 2007;187(2):155–160.10.1007/s00203-006-0183-8
  • Decroos K, Vanhemmens S, Cattoir S, et al. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol. 2005;183(1):45–55.10.1007/s00203-004-0747-4
  • Schoefer L, Mohan R, Braune A, et al. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiol Lett. 2002;208(2):197–202.10.1111/fml.2002.208.issue-2
  • Blaut Schoefer. Braune. Transformation of flavonoids by intestinal microorganisms. Int J Vitamin Nutr Res. 2003;73(2):79–87.
  • Hur H-G, Beger RD, Heinze TM, et al. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein. Arch Microbiol. 2002;178(1):8–12.10.1007/s00203-002-0414-6
  • Ohtomo T, Uehara M, Peñalvo JL, et al. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. Eur J Nutr. 2008;47(5):273–279.10.1007/s00394-008-0723-x
  • Frankenfeld CL. O-Desmethylangolensin: the importance of equol’s lesser known cousin to human health. Adv Nutr. 2011;2(4):317–324.10.3945/an.111.000539
  • Uchiyama S, Ueno T, Suzuki T. Identification of a newly isolated equol-producing lactic acid bacterium from the human feces. J Intest Microbiol. 2007;21(3):217–220.
  • Uchiyama S, Kimura H, Ueno T, et al. Detection of Lactococcus garvieae in foods and its existence in the human intestine (in Japanese). J Intest Microbiol. 2007;21(3):221–225.
  • Wang X-L, Hur H-G, Lee JH, et al. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol. 2005;71(1):214–219.10.1128/AEM.71.1.214-219.2005
  • Muthyala RS, Ju YH, Sheng S, et al. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors α and β. Bioorg Med Chem. 2004;12(6):1559–1567.10.1016/j.bmc.2003.11.035
  • Rowland I, Wiseman H, Sanders T, et al. Metabolism of oestrogens and phytoestrogens: role of the gut microflora. Biochem Soc Trans. 1999;27(2):304.10.1042/bst0270304
  • Minamida K, Tanaka M, Abe A, et al. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng. 2006;102(3):247–250.10.1263/jbb.102.247
  • Minamida K, Ota K, Nishimukai M, et al. Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol. 2008;58(Pt 5):1238–1240.10.1099/ijs.0.64894-0
  • Yokoyama S-i. Suzuki, T. Isolation and characterization of a novel equol-producing cacterium from human feces. Biosci Biotechnol Biochem. 2008;72(10):2660–2666.10.1271/bbb.80329
  • Yu Z-T, Yao W, Zhu W-Y. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol Lett. 2008;282(1):73–80.10.1111/fml.2008.282.issue-1
  • Tamura M, Hori S, Nakagawa H. Lactobacillus rhamnosus JCM 2771: impact on metabolism of isoflavonoids in the fecal flora from a male equol producer. Curr Microbiol. 2011;62(5):1632–1637.10.1007/s00284-011-9904-6
  • Shimada Y, Yasuda S, Takahashi M, et al. Cloning and expression of a novel NADP(H)-Ddependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus Strain 20-92. Appl Environ Microbiol. 2010;76(17):5892–5901.10.1128/AEM.01101-10
  • Shimada Y, Takahashi M, Miyazawa N, et al. Identification of two novel reductases involved in equol biosynthesis in lactococcus strain 20–92. J Mol Microbiol Biotechnol. 2011;21(3–4):160–172.10.1159/000335049
  • Shimada Y, Takahashi M, Miyazawa N, et al. Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol from daidzein in Lactococcus sp. strain 20-92. Appl Environ Microbiol. 2012;78(14):4902–4907.10.1128/AEM.00410-12
  • Tsuji H, Moriyama K, Nomoto K, et al. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS. Arch Microbiol. 2010;192(4):279–287.10.1007/s00203-010-0546-z
  • Tsuji H, Moriyama K, Nomoto K, et al. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. Strain NATTS. Appl Environ Microbiol. 2012;78(4):1228–1236.10.1128/AEM.06779-11
  • Kawada Y, Yokoyama S, Yanase E, et al. The production of S-equol from daidzein is associated with a cluster of three genes in Eggerthella sp. YY7918. Biosci Microbiota Food Health. 2016;35(3):113–121.
  • Abiru Y, Kumemura M, Ueno T, et al. Discovery of an S-equol rich food stinky tofu, a traditional fermented soy product in Taiwan. Int J Food Sci Nutr. 2012;63(8):964–970.10.3109/09637486.2012.687369
  • Tousen Y, Uehara M, Kruger MC, et al. Effects of dietary fibre and tea catechin, ingredients of the Japanese diet, on equol production and bone mineral density in isoflavone-treated ovariectomised mice. J Nutr Sci. 2012;1:e13.10.1017/jns.2012.14
  • Fujii S, Takahashi N, Inoue H, et al. A combination of soy isoflavones and cello-oligosaccharides changes equol/O-desmethylangolensin production ratio and attenuates bone fragility in ovariectomized mice. Biosci Biotechnol Biochem. 2016;80(8):1632–1635.10.1080/09168451.2016.1184559
  • Tousen Y, Abe F, Ishida T, et al. Resistant starch promotes equol production and inhibits tibial bone loss in ovariectomized mice treated with daidzein. Metabolism. 2011;60(10):1425–1432.10.1016/j.metabol.2011.02.009
  • Clavel T, Fallani M, Lepage P, et al. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J Nutr. 2005;135(12):2786–2792.10.1093/jn/135.12.2786

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.