12,720
Views
68
CrossRef citations to date
0
Altmetric
Award Review

Chemical regulators of plant hormones and their applications in basic research and agricultureFootnote*

ORCID Icon & ORCID Icon
Pages 1265-1300 | Received 09 Nov 2017, Accepted 30 Mar 2018, Published online: 20 Apr 2018

References

  • Park S-Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–1071.
  • Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol. 2010;61:49–64.10.1146/annurev-arplant-042809-112308
  • Korasick DA, Enders TA, Strader LC. Auxin biosynthesis and storage forms. J Exp Bot. 2013;64:2541–2555.10.1093/jxb/ert080
  • Kasahara H. Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem. 2015;80:1–9.10.1080/09168451.2015.1086259
  • Soeno K, Goda H, Ishii T, et al. Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol. 2010;51:524–536.10.1093/pcp/pcq032
  • Adams DO, Yang SF. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A. 1979;76:170–174.10.1073/pnas.76.1.170
  • Narukawa-Nara M, Nakamura A, Kikuzato K, et al. Aminooxy-naphthylpropionic acid and its derivatives are inhibitors of auxin biosynthesis targeting l-tryptophan aminotransferase: structure-activity relationships. Plant J. 2016;87:245–257.10.1111/tpj.2016.87.issue-3
  • Kakei Y, Nakamura A, Yamamoto M, et al. Biochemical and chemical biology study of rice OsTAR1 revealed that tryptophan aminotransferase is involved in auxin biosynthesis; identification of a potent OsTAR1 inhibitor, pyruvamine2031. Plant Cell Physiol. 2017;58:598–606.
  • He W, Brumos J, Li H, et al. A small-molecule screen identifies l-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in arabidopsis. Plant Cell. 2011;23:3944–3960.10.1105/tpc.111.089029
  • Nishimura T, Hayashi K, Suzuki H, et al. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 2014;77:352–366.10.1111/tpj.2014.77.issue-3
  • Kakei Y, Yamazaki C, Suzuki M, et al. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J. 2015;84:827–837.10.1111/tpj.13032
  • Grones P, Friml J. Auxin transporters and binding proteins at a glance. J Cell Sci. 2015;128:1–7.10.1242/jcs.159418
  • Petrásek J, Friml J. Auxin transport routes in plant development. Development. 2009;136:2675–2688.10.1242/dev.030353
  • Zazimalova E, Murphy AS, Yang H, et al. Auxin transporters–why wo many? Cold Spring Harb Perspect Biol. 2010;2:a001552.
  • Terasaka K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in arabidopsis thaliana roots. Plant cell. 2005;17:2922–2939.10.1105/tpc.105.035816
  • Geldner N, Friml J, Stierhof Y-D, et al. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413:425–428.10.1038/35096571
  • Noh B, Murphy AS, Spalding EP. Multidrug resistance-like genes of arabidopsis required for auxin transport and auxin-mediated development. Plant Cell. 2001;13:2441–2454.10.1105/tpc.13.11.2441
  • Geisler M, Blakeslee JJ, Bouchard R, et al. Cellular efflux of auxin catalyzed by the arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005;44:179–194.10.1111/j.1365-313X.2005.02519.x
  • Shin H, Shin H-S, Guo Z, et al. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases. Plant J. 2005;42:188–200.10.1111/tpj.2005.42.issue-2
  • Ruegger M, Dewey E, Hobbie L, et al. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell. 1997;9:745–757.10.1105/tpc.9.5.745
  • Ruegger M, Dewey E, Gray WM, et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev. 1998;12:198–207.10.1101/gad.12.2.198
  • Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435:441–445.10.1038/nature03543
  • Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435:446–451.10.1038/nature03542
  • Surpin M, Rojas-Pierce M, Carter C, et al. The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc Natl Acad Sci U S A. 2005;102:4902–4907.10.1073/pnas.0500222102
  • Rojas-Pierce M, Titapiwatanakun B, Sohn EJ, et al. Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem Biol. 2007;14:1366–1376.10.1016/j.chembiol.2007.10.014
  • Kim J-Y, Henrichs S, Bailly A, et al. Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem. 2010;285:23309–23317.10.1074/jbc.M110.105981
  • Tsuda E, Yang H, Nishimura T, et al. Alkoxy-auxins Are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J Biol Chem. 2011;286:2354–2364.10.1074/jbc.M110.171165
  • Ueda J, Toda Y, Kato K, et al. Identification of dehydrocostus lactone and 4-hydroxy-β-thujone as auxin polar transport inhibitors. Acta Physiol Plant. 2013;35:2251–2258.10.1007/s11738-013-1261-6
  • Arai T, Toda Y, Kato K, et al. Artabolide, a novel polar auxin transport inhibitor isolated from Artemisia absinthium. Tetrahedron. 2013;69:7001–7005.10.1016/j.tet.2013.06.052
  • Sukumar P, Edwards KS, Rahman A, et al. PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in arabidopsis. Plant Physiol. 2009;150:722–735.10.1104/pp.108.131607
  • Hayashi K, Nakamura S, Fukunaga S, et al. Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A. 2014;111:11557–11562.10.1073/pnas.1408960111
  • Gleason C, Foley RC, Singh KB. Mutant analysis in arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba. PLoS One. 2011;6:e17245.10.1371/journal.pone.0017245
  • Simon S, Kubeš M, Baster P, et al. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol. 2013;200:1034–1048.10.1111/nph.12437
  • Prigge M, Greenham K, Zhang Y, et al. The arabidopsis auxin receptor F-Box Proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. G3 (Bethesda). 2016;6:1383–1390.10.1534/g3.115.025585
  • Calderón Villalobos LIA, Lee S, De Oliveira C, et al. A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol. 2012;8:477–485.10.1038/nchembio.926
  • Hayashi K, Tan X, Zheng N, et al. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci U S A. 2008;105:5632–5637.10.1073/pnas.0711146105
  • Hayashi K, Neve J, Hirose M, et al. Rational design of an auxin antagonist of the SCF (TIR1) auxin receptor complex. ACS Chem. Biol. 2012;7:590–598.10.1021/cb200404c
  • Ye Y, Gong Z, Lu X, et al. Germostatin resistance locus 1 encodes a PHD finger protein involved in auxin-mediated seed dormancy and germination. Plant J. 2016;85:3–15.10.1111/tpj.13086
  • Ye Y, Zhao Y. The pleiotropic effects of the seed germination inhibitor germostatin. Plant Signal Behav. 2016;11:e1144000.10.1080/15592324.2016.1144000
  • Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul. 2015;34:740–760.10.1007/s00344-015-9546-1
  • Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59:225–251.10.1146/annurev.arplant.59.032607.092804
  • Rademacher W. Growth retardants : effects on gibberellin. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:501–531.10.1146/annurev.arplant.51.1.501
  • Rademacher W. Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul. 2015;34:845–872.10.1007/s00344-015-9541-6
  • Nakayama I, Miyazawa T, Kobayashi M, et al. Effects of a new plant growth regulator prohexadione calcium (BX-112) on shoot elongation caused by exogenously applied gibberellins in rice (Oryza sativa L.) Seedlings. Plant Cell Physiol. 1990;31:195–200.
  • Otani M, Yoon J-M, Park S-H, et al. Screening and characterization of an inhibitory chemical specific to Arabidopsis gibberellin 2-oxidases. Bioorg Med. Chem Lett. 2010;20:4259–4262.10.1016/j.bmcl.2010.05.015
  • Shani E, Weinstain R, Zhang Y, et al. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci U S A. 2013;110:4834–4839.10.1073/pnas.1300436110
  • Schayek H, Shani E, Weinstain R. Highlighting gibberellins accumulation sites in Arabidopsis thaliana root using fluorescently labeled gibberellins. Methods Mol Biol. 2017;1497:91–97.10.1007/978-1-4939-6469-7
  • Tal I, Zhang Y, Jørgensen ME, et al. The Arabidopsis NPF3 protein is a GA transporter. Nat Commun. 2016;7:11486.10.1038/ncomms11486
  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005;437:693–698.10.1038/nature04028
  • Nakajima M, Shimada A, Takashi Y, et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant J. 2006;46:880–889.10.1111/tpj.2006.46.issue-5
  • Hoad GV, Phinney BO, Sponsel VM, et al. The biological activity of sixteen gibberellin A4 and gibberellin A9 derivatives using seven bioassays. Phytochemistry. 1981;20:703–713.10.1016/0031-9422(81)85159-X
  • Yamauchi Y, Takeda-Kamiya N, Hanada A, et al. Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed arabidopsis thaliana seeds. Plant Cell Physiol. 2007;48:555–561.10.1093/pcp/pcm023
  • Tamura S, Sakurai A, Kainuma K, et al. Isolation of helminthosporol as a natural plant growth regulator and its chemical structure. Agric Biol Chem. 1963;27:738–739.10.1271/bbb1961.27.738
  • Sakurai A, Tamura S. Agricultural and biological chemistry syntheses of several compounds related to helminthosporol and their plant-growth regulating activities syntheses of several compounds related to helminthosporol and their plant-growth regulating activities. Agric Biol Chem. 1965;29:407–411.10.1080/00021369.1965.10858404
  • Briggs DE. Gibberellin-like activity of helminthosporol and helminthosporic acid. Nature. 1966;210:418–419.10.1038/210418b0
  • Miyazaki S, Jiang K, Kobayashi M, et al. Helminthosporic acid functions as an agonist for gibberellin receptor. Biosci Biotechnol Biochem. 2017;81:2152–2159.10.1080/09168451.2017.1381018
  • Metzger JD. Promotion of germination of dormant weed seeds by substituted phthalimides and gibberellic acid. Weed Sci. 1983;31:285–289.
  • Donald WW. AC-94,377 for breaking dormancy of wild mustard seed in soil. Farm res. 1985;43:28–31.
  • Yalpani N, Suttle JC, Hultstrand JF, et al. Competition for in vitro [3H]gibberellin A(4) binding in cucumber by substituted phthalimides: comparison with in vivo gibberellin-like activity. Plant Physiol. 1989;91:823–828.10.1104/pp.91.3.823
  • Rodaway SJ, Gates DW, Brindle C. Control of early seedling growth in varietal lines of hexaploid wheat (Triticum aestivum), durum wheat (Triticum durum), and barley (Hordeum vulgare) in response to the phthalimide growth regulant, AC 94,377. Plant Growth Regul. 1991;10:243–259.10.1007/BF00024415
  • Jiang K, Otani M, Shimotakahara H, et al. Substituted phthalimide AC94377 is a selective agonist of the gibberellin receptor GID1. Plant Physiol. 2017;173:825–835.10.1104/pp.16.00937
  • Gott KA, Thomas TH. Comparative effects of gibberellins and an N-substituted phthalimide on seed germination and extension growth of celery (Apium graveolens L.). Plant Growth Regul. 1986;4:273–279.10.1007/BF00028170
  • Jiang K, Shimotakahara H, Luo M, et al. Chemical screening and development of novel gibberellin mimics. Bioorg Med Chem Lett. 2017;27:3678–3682.10.1016/j.bmcl.2017.07.012
  • Yoon JM, Nakajima M, Mashiguchi K, et al. Chemical screening of an inhibitor for gibberellin receptors based on a yeast two-hybrid system. Bioorganic Med Chem Lett. 2013;23:1096–1098.10.1016/j.bmcl.2012.12.007
  • Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57:431–449.10.1146/annurev.arplant.57.032905.105231
  • Werner T, Schmülling T. Cytokinin action in plant development. Curr Opin Plant Biol. 2009;12:527–538.10.1016/j.pbi.2009.07.002
  • Miller CO, Skoog F, Okomura FS, et al. Isolation, structure and synthesis of kinetin, a substrance promoting cell division. J Am Chem Soc. 1956;78:1375–1380.10.1021/ja01588a032
  • Koshimizu K, Matsubara S, Kusaki T, et al. Isolation of a new cytokinin from immature yellow lupin seeds. Agric Biol Chem. 1967;31:795–801.10.1080/00021369.1967.10858881
  • Koshimizu. Isolation of a cytokinin, (-)-dihydrozeatin, from immature seeds of Lupinus luteus. Tetrahedron Lett. 1967;8:1317–1320.
  • Letham DS. Regulators of cell division in plant tissues—II. A cytokinin in plant extracts: Isolation and interaction with other growth regulators. Phytochemistry. 1966;5:269–286.10.1016/S0031-9422(00)82141-X
  • Letham DS, Palni LMS. The biosynthesis and metabolism of cytokinins. Ann Rev Plant Physiol. 1983;34:163–197.10.1146/annurev.pp.34.060183.001115
  • Frebort I, Kowalska M, Hluska T, et al. Evolution of cytokinin biosynthesis and degradation. J Exp Bot. 2011;62:2431–2452.10.1093/jxb/err004
  • Zürcher E, Müller B. Cytokinin synthesis, signaling, and function-advances and new insights. Int Rev Cell Mol Biol. 2016;324:1–38.
  • Sasaki E, Ogura T, Takei K, et al. Uniconazole, a cytochrome P450 inhibitor, inhibits trans-zeatin biosynthesis in Arabidopsis. Phytochemistry. 2013;87:30–38.10.1016/j.phytochem.2012.11.023
  • Sakakibara H. Cytokinin biosynthesis and regulation. Vitam Horm. 2005;72:271–287.10.1016/S0083-6729(05)72008-2
  • Durán-Medina Y, Díaz-Ramírez D, Marsch-Martínez N. Cytokinins on the move. Front Plant Sci. 2017;8:146.
  • Inoue T, Higuchi M, Hashimoto Y, et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001;409:1060–1063.10.1038/35059117
  • Suzuki T, Miwa K, Ishikawa K, et al. The arabidopsis sensor his-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol. 2001;42:107–113.10.1093/pcp/pce037
  • Ueguchi C, Sato S, Kato T, et al. The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in arabidopsis thaliana. Plant Cell Physiol. 2001;42:751–755.10.1093/pcp/pce094
  • Yamada H, Suzuki T, Terada K, et al. The arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 2001;42:1017–1023.10.1093/pcp/pce127
  • Yonekura-Sakakibara K, Kojima M, Yamaya T, et al. Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 2004;134:1654–1661.10.1104/pp.103.037176
  • Lomin SN, Krivosheev DM, Steklov MY, et al. Receptor properties and features of cytokinin signaling. Acta Naturae. 2012;4:31–45.
  • Kieber JJ, Schaller GE. Cytokinins. Arab B. 2014;12:e0168.10.1199/Tab.0168
  • Spíchal L, Krystof V, Paprskárová M, et al. Classical anticytokinins do not interact with cytokinin receptors but inhibit cyclin-dependent kinases. J Biol Chem. 2007;282:14356–14363.10.1074/jbc.M609750200
  • Spíchal L, Werner T, Popa I, et al. The purine derivative PI-55 blocks cytokinin action via receptor inhibition. FEBS J. 2009;276:244–253.10.1111/j.1742-4658.2008.06777.x
  • Arata Y, Nagasawa-Iida A, Uneme H, et al. The phenylquinazoline compound S-4893 is a Non-competitive cytokinin antagonist that targets arabidopsis cytokinin receptor CRE1 and promotes root growth in arabidopsis and rice. Plant Cell Physiol. 2010;51:2047–2059.10.1093/pcp/pcq163
  • Hothorn M, Dabi T, Chory J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol. 2011;7:766–768.10.1038/nchembio.667
  • Ohkuma K, Lyon JL, Addicott FT, et al. Abscisin II, an abscission-accelerating substance from young cotton fruit. Science. 1963;142:1592–1593.10.1126/science.142.3599.1592
  • Finkelstein R. Abscisic acid synthesis and response. Arab. B. 2013;11:e0166.10.1199/Tab.0166
  • Lim CW, Baek W, Jung J, et al. Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci. 2015;16:15251–15270.10.3390/ijms160715251
  • Aleman F, Yazaki J, Lee M, et al. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: A putative link of ABA and JA signaling. Sci Rep. 2016;6:28941.10.1038/srep28941
  • Xu J, Audenaert K, Hofte M, et al. Abscisic acid promotes susceptibility to the rice leaf blight pathogen xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PLoS One. 2013;8:e67413.10.1371/journal.pone.0067413
  • Meguro A, Sato Y. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Sci Rep. 2014;4:4555.
  • Xiong L. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003;133:29–36.10.1104/pp.103.025395
  • Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–185.10.1146/annurev.arplant.56.032604.144046
  • Endo A, Okamoto M, Koshiba T. ABA biosynthetic and catabolic pathways. Abscisic acid: Metab Transp Signal. 2014:21–45.
  • Dong T, Park Y, Hwang I. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem. 2015;58:29–48.10.1042/bse0580029
  • Gamble PE, Mullet JE. Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Eur J Biochem. 1986;160:117–121.10.1111/ejb.1986.160.issue-1
  • Xie X, Yoneyama K, Yoneyama K. The strigolactone story. Annu Rev Phytopathol. 2010;48:93–117.10.1146/annurev-phyto-073009-114453
  • Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol. 2015;66:161–186.10.1146/annurev-arplant-043014-114759
  • Jamil M, Charnikhova T, Verstappen F, et al. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch Biochem Biophys. 2010;504:123–131.10.1016/j.abb.2010.08.005
  • Rasmussen A, Beveridge CA, Geelen D. Inhibition of strigolactones promotes adventitious root formation. Plant Signal Behav. 2012;7:694–697.10.4161/psb.20224
  • Han S-Y, Kitahata N, Sekimata K, et al. A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol. 2004;135:1574–1582.10.1104/pp.104.039511
  • Han S young, Inoue H, Terada T, et al. Design and synthesis of lignostilbene-alpha,beta-dioxygenase inhibitors. Bioorg Med Chem Lett. 2002;12:1139–1142.10.1016/S0960-894X(02)00126-9
  • Han S-Y, Inoue H, Terada T, et al. N-benzylideneaniline and N-benzylaniline are potent inhibitors of lignostilbene-alpha, beta-dioxygenase, a key enzyme in oxidative cleavage of the central double bond of lignostilbene. J Enzyme Inhib Med Chem. 2003;18:279–283.10.1080/1475636031000080207
  • Han S, Kitahata N, Saito T, et al. A new lead compound for abscisic acid biosynthesis inhibitors targeting 9-cis-epoxycarotenoid dioxygenase. Bioorg Med Chem Lett. 2004;14:3033–3036.10.1016/j.bmcl.2004.04.035
  • Kitahata N, Han S-Y, Noji N, et al. A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg Med Chem. 2006;14:5555–5561.10.1016/j.bmc.2006.04.025
  • Boyd J, Gai Y, Nelson KM, et al. Sesquiterpene-like inhibitors of a 9-cis-epoxycarotenoid dioxygenase regulating abscisic acid biosynthesis in higher plants. Bioorg Med Chem. 2009;17:2902–2912.10.1016/j.bmc.2009.01.076
  • KrochkoJE, Abrams AD, Loewen MKet al. (+)-abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol. 1998;118:849–860.10.1104/pp.118.3.849
  • Kushiro T, Okamoto M, Nakabayashi K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–1656.10.1038/sj.emboj.7600121
  • Saito S, Hirai N, Matsumoto C, et al. Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004;134:1439–1449.10.1104/pp.103.037614
  • Kitahata N, Saito S, Miyazawa Y, et al. Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorganic Med Chem. 2005;13:4491–4498.10.1016/j.bmc.2005.04.036
  • Saito S, Okamoto M, Shinoda S, et al. A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in arabidopsis. Biosci Biotechnol Biochem. 2006;70:1731–1739.10.1271/bbb.60077
  • Todoroki Y, Aoyama H, Hiramatsu S, et al. Enlarged analogues of uniconazole, new azole containing inhibitors of ABA 8′-hydroxylase CYP707A. Bioorg Med Chem Lett. 2009;19:5782–5786.10.1016/j.bmcl.2009.07.137
  • Okazaki M, Nimitkeatkai H, Muramatsu T, et al. Abscinazole-E1, a novel chemical tool for exploring the role of ABA 8′-hydroxylase CYP707A. Bioorg Med Chem. 2011;19:406–413.10.1016/j.bmc.2010.11.011
  • Okazaki M, Kittikorn M, Ueno K, et al. Abscinazole-E2B, a practical and selective inhibitor of ABA 8’-hydroxylase CYP707A. Bioorg Med Chem. 2012;20:3162–3172.10.1016/j.bmc.2012.03.068
  • Todoroki Y, Kobayashi K, Shirakura M, et al. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8′-hydroxylase CYP707A with no growth-retardant effect. Bioorg Med Chem. 2009;17:6620–6630.10.1016/j.bmc.2009.07.070
  • Todoroki Y, Naiki K, Aoyama H, et al. Selectivity improvement of an azole inhibitor of CYP707A by replacing the monosubstituted azole with a disubstituted azole. Bioorg Med Chem Lett. 2010;20:5506–5509.10.1016/j.bmcl.2010.07.067
  • Takeuchi J, Okamoto M, Mega R, et al. Abscinazole-E3M, a practical inhibitor of abscisic acid 8’-hydroxylase for improving drought tolerance. Sci Rep. 2016;6:37060.10.1038/srep37060
  • Araki Y, Miyawaki A, Miyashita T, et al. A new non-azole inhibitor of ABA 8′-hydroxylase: Effect of the hydroxyl group substituted for geminal methyl groups in the six-membered ring. Bioorg Med Chem Lett. 2006;16:3302–3305.10.1016/j.bmcl.2006.03.024
  • Weng J-K, Ye M, Li B, et al. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell. 2016;166:881–893.10.1016/j.cell.2016.06.027
  • Lim EK, Doucet CJ, Hou B, et al. Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrahedron Asymmetry. 2005;16:143–147.10.1016/j.tetasy.2004.11.062
  • Xu Z-J, Nakajima M, Suzuki Y, et al. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Pant Physiol. 2002;129:1285–1295.
  • Hartung W, Sauter A, Hose E. Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot. 2002;53:27–32.10.1093/jexbot/53.366.27
  • Sauter A, Dietz K-J, Hartung W. A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ. 2002;25:223–228.10.1046/j.1365-3040.2002.00747.x
  • Lee KH, Piao HL, Kim H-Y, et al. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 2006;126:1109–1120.10.1016/j.cell.2006.07.034
  • Kang J, Hwang J-U, Lee M, et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A. 2010;107:2355–2360.10.1073/pnas.0909222107
  • Kuromori T, Miyaji T, Yabuuchi H, et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A. 2010;107:2361–2366.10.1073/pnas.0912516107
  • Kanno Y, Hanada A, Chiba Y, et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A. 2012;109:9653–9658.10.1073/pnas.1203567109
  • Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064–1068.
  • Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, et al. Structure and function of abscisic acid receptors. Trends Plant Sci. 2013;18:259–266.10.1016/j.tplants.2012.11.002
  • Okamoto M, Peterson FC, Defries A, et al. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci U S A. 2013;110:12132–12137.10.1073/pnas.1305919110
  • Cao M, Liu X, Zhang Y, et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res. 2013;23:1043–1054.10.1038/cr.2013.95
  • Miyazono K-I, Miyakawa T, Sawano Y, et al. Structural basis of abscisic acid signalling. Nature. 2009;462:609–614.10.1038/nature08583
  • Melcher K, Ng L-M, Zhou XE, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature. 2009;462:602–608.10.1038/nature08613
  • Nishimura N, Hitomi K, Arvai AS, et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science. 2009;326:1372–1379.
  • Yin P, Fan H, Hao Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol. 2009;16:1230–1236.10.1038/nsmb.1730
  • Takeuchi J, Okamoto M, Akiyama T, et al. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nat Chem Biol. 2014;10:477–482.10.1038/nchembio.1524
  • Ye Y, Zhou L, Liu X, et al. A novel chemical inhibitor of ABA signaling targets all ABA receptors. Plant Physiol. 2017;173:2356–2369.10.1104/pp.16.01862
  • Wilen RW, Hays DB, Mandel RM, et al. Competitive inhibition of abscisic acid-regulated gene expression by stereoisomeric acetylenic analogs of abscisic acid. Plant Physiol. 1993;101:469–476.10.1104/pp.101.2.469
  • Asami T, Kim B-T, Morita K, et al. Inhibition of α -amylase induction in barley seed and the induction of stomatal pore closure by artificial abscisic acid analogs (RCA series). Biosci Biotechnol Biochem. 1992;56:2089–2090.10.1271/bbb.56.2089
  • Asami T, Kim B-T, Yoshida S. One pot synthesis and optical resolution of synthetic mimic of abscisic acid affecting plant’s physiology. Tetrahedron Lett. 1994;35:6117–6118.10.1016/0040-4039(94)88091-3
  • Asami T, Robertson M, Yamamoto S, et al. Biological activities of an abscisic acid analog in barley, cress, and rice. Plant Cell Physiol. 1998;39:342–348.10.1093/oxfordjournals.pcp.a029375
  • Park S-Y, Peterson FC, Mosquna A, et al. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature. 2015;520:545–548.10.1038/nature14123
  • Nakashima K, Fujita Y, Kanamori N, et al. Three arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 2009;50:1345–1363.10.1093/pcp/pcp083
  • Fujita Y, Nakashima K, Yoshida T, et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in arabidopsis. Plant Cell Physiol. 2009;50:2123–2132.10.1093/pcp/pcp147
  • Fujii H, Zhu J-K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci U S A. 2009;106:8380–8385.10.1073/pnas.0903144106
  • Umezawa T, Sugiyama N, Mizoguchi M, et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A. 2009;106:17588–17593.10.1073/pnas.0907095106
  • Yoshida T, Nishimura N, Kitahata N, et al. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 2006;140:115–126.
  • Yoshida R, Umezawa T, Mizoguchi T, et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in arabidopsis. J Biol Chem. 2006;281:5310–5318.10.1074/jbc.M509820200
  • Kende H. Plant biology and the nobel prize. Science. 1998;282:627.10.1126/science.282.5389.627b
  • Larsen PB. Mechanisms of ethylene biosynthesis and response in plants. Essays Biochem. 2015;58:61–70.10.1042/bse0580061
  • Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol. 1984;35:155–189.10.1146/annurev.pp.35.060184.001103
  • Owens LD, Lieberman M, Kunishi A. Inhibition of ethylene production by rhizobitoxine. Plant Physiol. 1971;48:1–4.10.1104/pp.48.1.1
  • Boller T, Herner RC, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta. 1979;145:293–303.10.1007/BF00454455
  • Yu Y-B, Yang SF. Auxin-induced ethylene production and its inhibition by aminoethyoxyvinylglycine and cobalt ion. Plant Physiol. 1979;64:1074–1077.10.1104/pp.64.6.1074
  • Bradford kJ, Hsiao TC, Yang SF. Inhibition of ethylene synthesis in tomato plants subjected to anaerobic root stress. Plant Physiol. 1982;70:1503–1507.10.1104/pp.70.5.1503
  • Satoh S, Esashi Y. Alpha-aminoisabutyric acid, propyl gallate and cobalt ion and the mode of inhibition of ethylene production by cotyledonary segments of cocklebur seeds. Physiol Plant. 1983;57:521–526.10.1111/ppl.1983.57.issue-4
  • Kosugi Y, Matsuoka A, Higashi A, et al. 2-Aminooxyisobutyric acid inhibits the in vitro activities of both 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase in ethylene biosynthetic pathway and prolongs vase life of cut carnation flowers. J Plant Biol. 2014;57:218–224.10.1007/s12374-014-0180-4
  • Satoh S, Esashi Y. alpha-Aminoisabutyric acid, propyl gallate and cobalt ion and the mode of inhibition of ethylene production by cotyledonary segments of cocklebur seeds. Physiol Plant. 1983;57:521–526.10.1111/ppl.1983.57.issue-4
  • Sun X, Li Y, He W, et al. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat Commun. 2017;8:15758.10.1038/ncomms15758
  • Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 2004;7:40–49.10.1016/j.pbi.2003.11.011
  • Ju C, Chang C. Mechanistic insights in ethylene perception and signal transduction. Plant Physiol. 2015;169:85–95.10.1104/pp.15.00845
  • Zhang F, Qi B, Wang L, et al. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat Commun. 2016;7:13018.10.1038/ncomms13018
  • Zhang F, Wang L, Qi B, et al. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc Natl Acad Sci U S A. 2017;114:10274–10279.10.1073/pnas.1707937114
  • Burg SP, Burg EA. Molecular requirements for the biological activity of ethylene. Plant Physiol. 1967;42:144–152.10.1104/pp.42.1.144
  • Sisler EC, Blankenship SM, Guest M. Competition of cyclooctenes and cyclooctadienes for ethylene binding and activity in plants. Plant Growth Regul. 1990;9:157–164.10.1007/BF00027443
  • Schaller GE, Bleecker AB. Ethylene-binding sites generated in yeast expressing the arabidopsis ETR1 gene. Science. 1995;270:1809–1811.10.1126/science.270.5243.1809
  • Serek M, Tamari G, Sisler EC, et al. Inhibition of ethylene-induced cellular senescence symptoms by 1-methylcyclopropene, a new inhibitor of ethylene action. Physiol Plant. 1995;94:229–232.10.1111/ppl.1995.94.issue-2
  • Sisler EC, Blankenship SM. Diazocyclopentadiene (DACP), a light sensitive reagent for the ethylene receptor in plants. Plant Growth Regul. 1993;12:125–132.10.1007/BF00144593
  • Sisler EC, Serek M. Compounds interacting with the ethylene receptor in plants. Plant Biol. 2003;5:473–480.10.1055/s-2003-44782
  • Hirayama T, Kieber JJ, Hirayama N, et al. Responsive-to-antagonist1, a Menkes/Wilson disease–related copper transporter, is required for ethylene signaling in arabidopsis. Cell. 1999;97:383–393.10.1016/S0092-8674(00)80747-3
  • Thompson JS, Harlow RL, Whitney JF. Copper(I)-olefin complexes. Support for the proposed role of copper in the ethylene effect in plants. J Am Chem Soc. 1983;105:3522–3527.10.1021/ja00349a026
  • Li W, Lacey RF, Ye Y, et al. Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genet. 2017;13:e1006703.10.1371/journal.pgen.1006703
  • Clouse SD. Brassinosteroids. Arab. B. 2011;9:e0151.10.1199/Tab.0151
  • Zhu J-Y, Sae-Seaw J, Wang Z-Y. Brassinosteroid signalling. Development. 2013;140:1615–1620.
  • Li J, Nagpal P, Vitart V, et al. A role for brassinosteroids in light-dependent development of arabidopsis. Science. 1996;272:398–401.10.1126/science.272.5260.398
  • Szekeres M, Németh K, Koncz-Kálmán Z, et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in arabidopsis. Cell. 1996;85:171–182.10.1016/S0092-8674(00)81094-6
  • Choe S, Dilkes BP, Fujioka S, et al. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998;10:231–243.
  • Choe S, Dilkes BP, Gregory BD, et al. The arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol. 1999;119:897–907.10.1104/pp.119.3.897
  • Gachotte D, Husselstein T, Bard M, et al. Isolation and characterization of an Arabidopsis thaliana cDNA encoding a delta 7-sterol-C-5-desaturase by functional complementation of a defective yeast mutant. Plant J. 1996;9:391–398.10.1046/j.1365-313X.1996.09030391.x
  • Choe S, Noguchi T, Fujioka S, et al. The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell. 1999;11:207–221.
  • Asami T, Yoshida S. Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 1999;4:348–353.10.1016/S1360-1385(99)01456-9
  • Chung Y, Choe S. The regulation of brassinosteroid biosynthesis in arabidopsis. CRC. Crit Rev Plant Sci. 2013;32:396–410.10.1080/07352689.2013.797856
  • Clouse SD, Langford M, McMorris TC. A brassinosteroid-insensitive mutant in arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996;111:671–678.10.1104/pp.111.3.671
  • Li J, Chory J, Wilford R, et al. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 1997;90:929–938.10.1016/S0092-8674(00)80357-8
  • Friedrichsen DM, Joazeiro CAP, Li J, et al. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol. 2000;123:1247–1255.10.1104/pp.123.4.1247
  • He Z, Wang ZY, Li J, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science. 2000;288:2360–2363.10.1126/science.288.5475.2360
  • Wang Z-Y, Seto H, Fujioka S, et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature. 2001;410:380–383.10.1038/35066597
  • Asami T, Min YK, Nagata N, et al. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 2000;123:93–100.10.1104/pp.123.1.93
  • Asami T, Mizutani M, Fujioka S, et al. Selective interaction of triazole derivatives with DWF4, a Cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem. 2001;276:25687–25691.10.1074/jbc.M103524200
  • Sekimata K, Kimura T, Kaneko I, et al. A specific brassinosteroid biosynthesis inhibitor, Brz 2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta. 2001;213:716–721.10.1007/s004250100546
  • Sekimata K, Han S-Y, Yoneyama K, et al. A specific and potent inhibitor of brassinosteroid biosynthesis possessing a dioxolane ring. J Agric Food Chem. 2002;50:3486–3490.10.1021/jf011716w
  • Oh K, Yamada K, Asami T, et al. Synthesis of novel brassinosteroid biosynthesis inhibitors based on the ketoconazole scaffold. Bioorg Med Chem Lett. 2012;22:1625–1628.10.1016/j.bmcl.2011.12.120
  • Yamada K, Yoshizawa Y, Oh K. Synthesis of 2RS,4RS-1-[2-Phenyl-4-[2-(2-trifluromethoxy-phenoxy)-ethyl]-1,3-dioxolan-2-yl-methyl]-1H-1,2,4-triazole derivatives as potent inhibitors of brassinosteroid biosynthesis. Molecules. 2012;17:4460–4473.10.3390/molecules17044460
  • Yamada K, Yajima O, Yoshizawa Y, et al. Synthesis and biological evaluation of novel azole derivatives as selective potent inhibitors of brassinosteroid biosynthesis. Bioorg Med Chem. 2013;21:2451–2461.10.1016/j.bmc.2013.03.006
  • Oh K, Matsumoto T, Yamagami A, et al. Fenarimol, a pyrimidine-type fungicide, inhibits brassinosteroid biosynthesis. Int J Mol Sci. 2015;16:17273–17288.10.3390/ijms160817273
  • Oh K, Matsumoto T, Yamagami A, et al. YCZ-18 Is a new brassinosteroid biosynthesis inhibitor. PLoS One. 2015;10:e0120812.10.1371/journal.pone.0120812
  • Wang ZY, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell. 2002;2:505–513.10.1016/S1534-5807(02)00153-3
  • He J-X, Gendron JM, Sun Y, et al. BZR1 Is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science. 2005;307:1634–1638.10.1126/science.1107580
  • Bekh-Ochir D, Shimada S, Yamagami A, et al. A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling. Planta. 2013;237:1509–1525.10.1007/s00425-013-1859-3
  • Yamagami A, Nakazawa M, Matsui M, et al. Chemical genetics reveal the novel transmembrane protein BIL4, which mediates plant cell elongation in brassinosteroid signaling. Biosci Biotechnol Biochem. 2009;73:415–421.10.1271/bbb.80752
  • Yamagami A, Saito C, Nakazawa M, et al. Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci Rep. 2017;7:5739.10.1038/s41598-017-06016-2
  • Shimada S, Komatsu T, Yamagami A, et al. Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling. Plant Cell. 2015;27:375–390.10.1105/tpc.114.131508
  • Lin L-C, Chueh C-M, Wang L-C. Investigating the Phytohormone ethylene response pathway by chemical genetics. Methods Mol. Biol. 2014:63–77.10.1007/978-1-62703-751-8
  • Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling. New Phytol. 2015;206:522–540.10.1111/nph.13269
  • Nolan T, Chen J, Yin Y. Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochem J. 2017;474:2641–2661.10.1042/BCJ20160633
  • Kinoshita T, Caño-Delgado A, Seto H, et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature. 2005;433:167–171.10.1038/nature03227
  • Watanabe B. Structure-activity relationship studies of insect and plant steroid hormones. J Pestic Sci. 2015;40:146–151.10.1584/jpestics.J15-04
  • Cerana R, Bonetti A, Marre MT, et al. Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls. Physiol Plant. 1983;59:23–27.10.1111/ppl.1983.59.issue-1
  • Wada K, Marumo S, Ikekawa N, et al. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol. 1981;22:323–325.
  • Wada K, Marumo S, Abe H, et al. A rice lamina inclination test–a micro- quantitative bioassay for brassinosteroids. Agric Biol Chem. 1984;483:719–726.
  • Wada K, Kondo H, Marumo S. A simple bioassay for brassinosteroids: A wheat leaf-unrolling test. Agric Biol Chem. 1985;49:2249–2251.
  • Kim SK, Yokota T, Takahashi N. Brassinosteroids in phaseolus vulgaris. Part III. 25-Methyldolichosterone. A new brassinosteroid with a tertiary butyl group from immature seed of Phaseolus vulgaris. Agric Biol Chem. 1987;51:2303–2305.
  • Mori K, Takeuchi T. Brassinolide and its analogues, VIII. Synthesis of 25-methyldolichosterone, 25-methyl-2,3-diepidolichosterone, 25-methylcastasterone and 25-methylbrassinolide. Liebigs Ann der. Chemie. 1988;8:815–818.
  • Watanabe B, Yamamoto S, Yokoi T, et al. Brassinolide-like activity of castasterone analogs with varied side chains against rice lamina inclination. Bioorg Med Chem. 2017;25:4566–4578.10.1016/j.bmc.2017.06.012
  • Thussagunpanit J, Jutamanee K, Homvisasevongsa S, et al. Characterization of synthetic ecdysteroid analogues as functional mimics of brassinosteroids in plant growth. J Steroid Biochem. Mol. Biol. 2017;172:1–8.10.1016/j.jsbmb.2017.05.003
  • Park K-H, Yokota T, Sakurai A, et al. Occurrence of Castasterone, Brassinolide and Methyl 4-Chloroindole- 3-acetate in Immature Vicia faba Seeds. Agric Biol Chem. 1987;51:3081–3086.
  • Choi Y-H, Inoue T, Fujioka S, et al. Identification of brassinosteroid-like active substances in plant-cell cultures. Biosci Biotechnol Biochem. 1993;57:860–861.10.1271/bbb.57.860
  • Park K-H, Park J-D, Hyun K-H, et al. Brassinosteroids and monoglycerides with brassinosteroid-like activity in immature seeds of oryza sativa and Perilla frutescens and in cultured cells of Nicotiana tabacum. Biosci Biotechnol Biochem. 1994;58:2241–2243.10.1271/bbb.58.2241
  • Park K-H, Park J-D, Hyun K-H, et al. Brassinosteroids and monoglycerides in immature seeds of cassia tora as the active principles in the rice lamina inclination bioassay. Biosci Biotechnol Biochem. 1994;58:1343–1344.10.1271/bbb.58.1343
  • Muto T, Todoroki Y. Brassinolide-2,3-acetonide: a brassinolide-induced rice lamina joint inclination antagonist. Bioorg Med Chem. 2013;21:4413–4419.10.1016/j.bmc.2013.04.048
  • Takimoto S, Sugiura A, Minami S, et al. In silico exploration for agonists/antagonists of brassinolide. Bioorg Med Chem Lett. 2016;26:1709–1714.10.1016/j.bmcl.2016.02.054
  • Sugiura A, Horoiwa S, Aoki T, et al. Discovery of a nonsteroidal brassinolide-like compound, NSBR1. J Pestic Sci. 2017;42:105–111.10.1584/jpestics.D17-035
  • Irani NG, Di Rubbo S, Mylle E, et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol. 2012;8:583–589.10.1038/nchembio.958
  • De Rybel B, Audenaert D, Vert G, et al. Chemical inhibition of a subset of arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol. 2009;16:594–604.10.1016/j.chembiol.2009.04.008
  • Rozhon W, Wang W, Berthiller F, et al. Bikinin-like inhibitors targeting GSK3/Shaggy-like kinases: characterisation of novel compounds and elucidation of their catabolism in planta. BMC Plant Biol. 2014;14:172.10.1186/1471-2229-14-172
  • Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2007;2013(111):1021–1058.
  • Santino A, Taurino M, De Domenico S, et al. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 2013;32:1085–1098.10.1007/s00299-013-1441-2
  • Wang L, Wu J. The essential role of jasmonic acid in plant–herbivore interactions – using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics. 2013;40:597–606.10.1016/j.jgg.2013.10.001
  • Yan C, Xie D. Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J. 2015;13:1233–1240.10.1111/pbi.12417
  • Yuan Z, Zhang D. Roles of jasmonate signalling in plant inflorescence and flower development. Curr Opin Plant Biol. 2015;27:44–51.10.1016/j.pbi.2015.05.024
  • Yamane H, Sugawara J, Suzuki Y, et al. Syntheses of jasmonic acid related compounds and their structure-activity relationships on the growth of rice seedings. Agric Biol Chem. 1980;44:2857–2864.
  • Yamane H, Takagi H, Abe H, et al. Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol. 1981;22:689–697.
  • Ueda J, Kato J. Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol. 1980;66:246–249.10.1104/pp.66.2.246
  • Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2007;100:681–697.10.1093/aob/mcm079
  • Browse J. The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry. 2009;70:1539–1546.10.1016/j.phytochem.2009.08.004
  • Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis – Structure, function, regulation. Phytochemistry. 2009;70:1532–1538.10.1016/j.phytochem.2009.07.032
  • Wasternack C, Kombrink E. Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol. 2010;5:63–77.10.1021/cb900269u
  • Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta. 2012;236:1351–1366.10.1007/s00425-012-1705-z
  • Pena-Cortés H, Albrecht T, Prat S, et al. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta. 1993;191:123–128.
  • Meesters C, Mönig T, Oeljeklaus J, et al. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol. 2014;10:830–836.10.1038/nchembio.1591
  • Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in arabidopsis. Plant Cell. 2004;16:2117–2127.10.1105/tpc.104.023549
  • Seo HS, Song JT, Cheong J-J, et al. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A. 2001;98:4788–4793.10.1073/pnas.081557298
  • Kitaoka N, Matsubara T, Sato M, et al. Arabidopsis CYP94B3 encodes Jasmonyl-l-Isoleucine 12-Hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol. 2011;52:1757–1765.10.1093/pcp/pcr110
  • Koo AJK, Cooke TF, Howe GA. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A. 2011;108:9298–9303.10.1073/pnas.1103542108
  • Heitz T, Widemann E, Lugan R, et al. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem. 2012;287:6296–6306.10.1074/jbc.M111.316364
  • Glauser G, Grata E, Dubugnon L, et al. Spatial and temporal dynamics of jasmonate synthesis and accumulation in arabidopsis in response to wounding. J Biol Chem. 2008;283:16400–16407.10.1074/jbc.M801760200
  • Miersch O, Neumerkel J, Dippe M, et al. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol. 2007;177:114–127.
  • Gidda SK, Miersch O, Levitin A, et al. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem. 2003;278:17895–17900.10.1074/jbc.M211943200
  • Ueda M, Okazaki M, Ueda K, et al. A Leaf-Closing substance of albizzia julibrissin durazz. Tetrahedron. 2000;56:8101–8105.10.1016/S0040-4020(00)00729-8
  • Ueda M, Nakamura Y. Chemical basis of plant leaf movement. Plant Cell Physiol. 2007;48:900–907.10.1093/pcp/pcm060
  • Nakamura Y, Miyatake R, Inomata S, et al. Synthesis and bioactivity of potassium beta-D-glucopyranosyl 12-hydroxy jasmonate and related compounds. Biosci Biotechnol Biochem. 2008;72:2867–2876.10.1271/bbb.80338
  • Nakamura Y, Mithöfer A, Kombrink E, et al. 12-Hydroxyjasmonic acid glucoside Is a COI1-JAZ-independent activator of leaf-closing movement in samanea saman. Plant Physiol. 2011;155:1226–1236.10.1104/pp.110.168617
  • Feys B, Benedetti CE, Penfold CN, et al. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant cell. 1994;6:751–759.10.1105/tpc.6.5.751
  • Xie D-X, Feys BF, James S, et al. COI1: an arabidopsis gene required for jasmonate-regulated defense and fertility. Science. 1998;280:1091–1094.10.1126/science.280.5366.1091
  • Boter M, Ruíz-Rivero O, Abdeen A, et al. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 2004;18:1577–1591.10.1101/gad.297704
  • Dombrecht B, Xue GP, Sprague SJ, et al. MYC2 differentially modulates diverse jasmonate-dependent functions in arabidopsis. Plant Cell. 2007;19:2225–22245.10.1105/tpc.106.048017
  • Chini A, Fonseca S, Fernández G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 2007;448:666–671.10.1038/nature06006
  • Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature. 2007;448:661–665.10.1038/nature05960
  • Santner A, Estelle M. The JAZ Proteins link jasmonate perception with transcriptional changes. Plant Cell. 2008;19:3835–3842.
  • Sheard LB, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature. 2010;468:400–405.10.1038/nature09430
  • Fonseca S, Chini A, Hamberg M, et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol. 2009;5:344–350.10.1038/nchembio.161
  • Monte I, Hamberg M, Chini A, et al. Rational design of a ligand-based antagonist of jasmonate perception. Nat Chem Biol. 2014;10:671–676.10.1038/nchembio.1575
  • Zhang L, Yao J, Withers J, et al. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proc. Natl. Acad. Sci. 2015;12:14354–14359.10.1073/pnas.1510745112
  • MSA NM. Miraculous role of salicylic acid in plant and animal system. Am J Plant Physiol. 2007;2:51–58.
  • Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol. 1998;1:316–323.10.1016/1369-5266(88)80053-0
  • Durrant WE, Dong X. Systemic Acquired Resistance. Annu Rev Phytopathol. 2004;42:185–209.10.1146/annurev.phyto.42.040803.140421
  • Heil M, Ton J. Long-distance signalling in plant defence. Trends Plant Sci. 2008;13:264–272.10.1016/j.tplants.2008.03.005
  • Vlot AC, Dempsey DA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206.10.1146/annurev.phyto.050908.135202
  • Boatwright JL, Pajerowska-Mukhtar K. Salicylic acid: an old hormone up to new tricks. Mol Plant Pathol. 2013;14:623–634.10.1111/mpp.2013.14.issue-6
  • Shah J, Chaturvedi R, Chowdhury Z, et al. Signaling by small metabolites in systemic acquired resistance. Plant J. 2014;79:645–658.10.1111/tpj.2014.79.issue-4
  • Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62:3321–3338.10.1093/jxb/err031
  • Yuan S, Lin H-H. Role of salicylic acid in plant abiotic stress. Z. Naturforsch. C. 2008;63:313–320.
  • Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci. 2014;5:4.
  • Khan MIR, Fatma M, Per TS, et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 2015;6:462.
  • Liu Z, Ding Y, Wang F, et al. Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep. 2016;35:719–731.10.1007/s00299-015-1925-3
  • Yoshimoto K. Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling. Autophagy. 2010;6:192–193.10.4161/auto.6.1.10843
  • Yoshimoto K, Jikumaru Y, Kamiya Y, et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in arabidopsis. Plant cell. 2009;21:2914–2927.10.1105/tpc.109.068635
  • Lenz HD, Haller E, Melzer E, et al. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011;66:818–830.10.1111/j.1365-313X.2011.04546.x
  • Chen Z, Zheng Z, Huang J, et al. Biosynthesis of salicylic acid in plants. Plant Signal Behav. 2009;4:493–496.10.4161/psb.4.6.8392
  • Bandurska H, Niedziela J, Chadzinikolau T. Separate and combined responses to water deficit and UV-B radiation. Plant Sci. 2013;213:98–105.10.1016/j.plantsci.2013.09.003
  • Wildermuth MC, Dewdney J, Wu G, et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–565.10.1038/35107108
  • Dempsey DA, Vlot AC, Wildermuth MC, et al. Salicylic acid biosynthesis and metabolism. Arab B. 2011;9:e0156.10.1199/Tab.0156
  • Yalpani N, Raskin I. Salicylic acid: a systemic signal in induced plant disease resistance. Trends Microbiol. 1993;1:88–92.10.1016/0966-842X(93)90113-6
  • León J, Shulaev V, Yalpani N, et al. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci U S A. 1995;92:10413–10417.10.1073/pnas.92.22.10413
  • Silverman P, Seskar M, Kanter D, et al. Salicylic scid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 1995;108:633–639.10.1104/pp.108.2.633
  • Coquoz J-L, Buchala A, Metraux J-P. The biosynthesis of salicylic acid in potato plants. Plant Physiol. 1998;117:1095–1101.10.1104/pp.117.3.1095
  • Garcion C, Lohmann A, Lamodière E, et al. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of arabidopsis. Plant Physiol. 2008;147:1279–1287.10.1104/pp.108.119420
  • Pallas JA, Paiva NL, Lamb C, et al. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 1996;10:281–293.10.1046/j.1365-313X.1996.10020281.x
  • Howles PA, Sewalt V, Paiva NL, et al. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol. 1996;112:1617–1624.10.1104/pp.112.4.1617
  • Meuwly P, Molders W, Buchala A, et al. Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol. 1995;109:1107–1114.10.1104/pp.109.3.1107
  • Seskar M, Shulaev V, Raskin I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. 1998;116:387–392.10.1104/pp.116.1.387
  • Dudareva N, Raguso RA, Wang J, et al. Floral scent production in Clarkia breweri. III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiol. 1998;116:599–604.10.1104/pp.116.2.599
  • Park S-W, Liu P-P, Forouhar F, et al. Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J Biol Chem. 2009;284:7307–7317.10.1074/jbc.M807968200
  • Dong X. NPR1, all things considered. Curr Opin Plant Biol. 2004;7:547–552.10.1016/j.pbi.2004.07.005
  • Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 2013;64:839–863.10.1146/annurev-arplant-042811-105606
  • Fu ZQ, Yan S, Saleh A, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 2012;486:228–232.
  • Wu Y, Zhang D, Chu JY, et al. The arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 2012;1:639–647.10.1016/j.celrep.2012.05.008
  • Friedrich L, Lawton K, Ruess W, et al. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 1996;10:61–70.10.1046/j.1365-313X.1996.10010061.x
  • Görlach J, Volrath S, Knauf-Beiter G, et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell. 1996;8:629–643.10.1105/tpc.8.4.629
  • Lawton KA, Friedrich L, Hunt M, et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 1996;10:71–82.10.1046/j.1365-313X.1996.10010071.x
  • Yoshioka K, Nakashita H, Klessig DF, et al. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 2001;25:149–157.10.1046/j.1365-313x.2001.00952.x
  • Nakashita H, Yoshioka K, Yasuda M, et al. Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation. Physiol Mol Plant Pathol. 2002;61:197–203.10.1006/pmpp.2002.0426
  • Lebel E, Heifetz P, Thorne L, et al. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 1998;16:223–233.10.1046/j.1365-313x.1998.00288.x
  • Kesarwani M, Yoo J, Dong X. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in arabidopsis. Plant Physiol. 2007;144:336–346.10.1104/pp.106.095299
  • Fitzgerald HA, Chern M-S, Navarre R, et al. Overexpression of (At) NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant-Microbe Interact. 2004;17:140–151.10.1094/MPMI.2004.17.2.140
  • Bai W, Chern M, Ruan D, et al. Enhanced disease resistance and hypersensitivity to BTH by introduction of an NH1/OsNPR1 paralog. Plant Biotechnol J. 2011;9:205–215.10.1111/pbi.2010.9.issue-2
  • Yasuda M, Nakashita H, Hasegawa S, et al. N -Cyanomethyl-2-chloroisonicotinamide induces systemic acquired resistance in arabidopsis without salicylic acid accumulation. Biosci Biotechnol Biochem. 2003;67:322–328.10.1271/bbb.67.322
  • Seo E-K, Nakamura H, Mori M, et al. Screening and characterization of a chemical regulator for plant disease resistance. Bioorg Med Chem Lett. 2012;22:1761–1765.10.1016/j.bmcl.2011.12.082
  • Jiang K, Kurimoto T, Seo E, et al. Development of inhibitors of salicylic acid signaling. J Agric Food Chem. 2015;63:7124–7133.10.1021/acs.jafc.5b01521
  • Noutoshi Y, Okazaki M, Shirasu K. Imprimatins A and B. Plant Signal Behav. 2012;7:1715–1717.10.4161/psb.22368
  • Noutoshi Y, Okazaki M, Kida T, et al. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in arabidopsis. Plant Cell. 2012;24:3795–3804.10.1105/tpc.112.098343
  • Noutoshi Y, Jikumaru Y, Kamiya Y, et al. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid. Sci Rep. 2012;2:705.10.1038/srep00705
  • Noutoshi Y, Ikeda M, Shirasu K, et al. Diuretics prime plant immunity in arabidopsis thaliana. PLoS One. 2012;7:e48443.10.1371/journal.pone.0048443
  • Noutoshi Y, Ikeda M, Saito T, et al. Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana. Front Plant Sci. 2012;3:245.
  • Cook CE, Whichard LP, Turner B, et al. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 1966;154:1189–1190.10.1126/science.154.3753.1189
  • Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–827.10.1038/nature03608
  • Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455:195–200.10.1038/nature07272
  • Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching. Nature. 2008;455:189–194.10.1038/nature07271
  • Kapulnik Y, Delaux P-M, Resnick N, et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta. 2011;233:209–216.10.1007/s00425-010-1310-y
  • Sun H, Tao J, Hou M, et al. A strigolactone signal is required for adventitious root formation in rice. Ann Bot. 2015;115:1155–1162.10.1093/aob/mcv052
  • Agusti J, Herold S, Schwarz M, et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci U S A. 2011;108:20242–20247.10.1073/pnas.1111902108
  • Yamada Y, Umehara M. Possible roles of strigolactones during leaf senescence. Plants. 2015;4:664–677.10.3390/plants4030664
  • Toh S, Kamiya Y, Kawakami N, et al. Thermoinhibition uncovers a role for strigolactones in arabidopsis seed germination. Plant Cell Physiol. 2012;53:107–117.10.1093/pcp/pcr176
  • Li GD, Pan LN, Jiang K, et al. Strigolactones are involved in sugar signaling to modulate early seedling development in Arabidopsis. Plant Biotechnol. 2016;33:87–97.10.5511/plantbiotechnology.16.0326a
  • Zwanenburg B, Mwakaboko AS, Kannan C. Suicidal germination for parasitic weed control. Pest Manag Sci. 2016;72:2016–2025.10.1002/ps.2016.72.issue-11
  • Akiyama K, Hayashi H. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bont. 2006;97:925–931.10.1093/aob/mcl063
  • Brewer PB, Koltai H, Beveridge CA. Diverse roles of strigolactones in plant development. Mol Plant. 2013;6:18–28.10.1093/mp/sss130
  • Yoneyama K, Xie X, Yoneyama K, et al. Strigolactones: structures and biological activities. Pest Manag Sci. 2009;65:467–470.10.1002/ps.v65:5
  • Johnson AW, Gowada G, Hassanali A, et al. The preparation of synthetic analogues of strigol. J Chem Soc Perkin Trans. 1981;1:1734–1743.10.1039/p19810001734
  • Mangnus EM, Dommerholt FJ, De Jong RLP, et al. Improved synthesis of strigol analog GR24 and evaluation of the biological activity of its diastereomers. J Agric Food Chem. 1992;40:1230–1235.10.1021/jf00019a031
  • Mangnus EM, Van Vliet LA, Vandenput DAL, et al. Structural modifications of strigol analogs. Influence of the B and C rings on the bioactivity of the germination stimulant GR24. J Agric Food Chem. 1992;40:1222–1229.10.1021/jf00019a030
  • Nefkens Gérard H L, Jan Willem J, Thuring F, Beenakkers Marco F M, et al. Synthesis of a phthaloylglycine-derived strigol analogue and its germination stimulatory activity toward seeds of the parasitic weeds Striga hermonthica and Orobanche crenata. 1997;45:2273–2277.
  • Jan Willem J, Thuring F, Bitter Harry H, de Kok Margreet M, et al. N-phthaloylglycine-derived strigol analogues. Influence of the D-ring on seed germination activity of the parasitic weeds Striga hermonthica and Orobanche crenata. 1997;45:2284–2290.
  • Mwakaboko AS, Zwanenburg B. Strigolactone analogs derived from ketones using a working model for germination stimulants as a blueprint. Plant Cell Physiol. 2011;52:699–715.10.1093/pcp/pcr031
  • Zwanenburg B, Mwakaboko AS. Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorg Med Chem. 2011;19:7394–7400.10.1016/j.bmc.2011.10.057
  • Fukui K, Ito S, Ueno K, et al. New branching inhibitors and their potential as strigolactone mimics in rice. Bioorg Med Chem Lett. 2011;21:4905–4908.10.1016/j.bmcl.2011.06.019
  • Fukui K, Ito S, Asami T. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol Plant. 2013;6:88–99.10.1093/mp/sss138
  • Takahashi I, Fukui K, Asami T. Chemical modification of a phenoxyfuranone-type strigolactone mimic for selective effects on rice tillering or Striga hermonthica seed germination. Pest Manag Sci. 2016;72:2048–2053.10.1002/ps.2016.72.issue-11
  • Boyer F-D, de Saint Germain A, Pillot J-P, et al. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 2012;159:1524–1544.10.1104/pp.112.195826
  • Alder A, Jamil M, Marzorati M, et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science. 2012;335:1348–1351.10.1126/science.1218094
  • Abe S, Sado A, Tanaka K, et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A. 2014;111:18084–18089.10.1073/pnas.1410801111
  • Brewer PB, Yoneyama K, Filardo F, et al. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A. 2016;113:6301–6306.10.1073/pnas.1601729113
  • Ueno K, Furumoto T, Umeda S, et al. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry. 2014;108:122–128.10.1016/j.phytochem.2014.09.018
  • Jia K-P, Kountche BA, Jamil M, et al. Nitro-phenlactone, a carlactone analog with pleiotropic strigolactone activities. Mol Plant. 2016;9:1341–1344.10.1016/j.molp.2016.05.017
  • Boyer F-D, de Saint Germain A, Pouvreau J-B, et al. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol Plant. 2014;7:675–690.10.1093/mp/sst163
  • Pereira RG, Cala A, Fernández-Aparicio M, et al. Gibberellic and kaurenoic hybrid strigolactone mimics for seed germination of parasitic weeds. Pest Manag Sci. 2017;73:2529–2537.10.1002/ps.2017.73.issue-12
  • Cala A, Ghooray K, Fernández-Aparicio M, et al. Phthalimide-derived strigolactone mimics as germinating agents for seeds of parasitic weeds. Pest Manag Sci. 2016;72:2069–2081.10.1002/ps.2016.72.issue-11
  • Dvorakova M, Soudek P, Vanek T. Triazolide strigolactone mimics influence root development in arabidopsis. J Nat Prod. 2017;80:1318–1327.10.1021/acs.jnatprod.6b00879
  • Tsuchiya Y, Vidaurre D, Toh S, et al. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol. 2010;6:741–749.10.1038/nchembio.435
  • Toh S, Holbrook-Smith D, Stogios PJ, et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science. 2015;350:203–207.10.1126/science.aac9476
  • Lin H, Wang R, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell. 2009;21:1512–1525.10.1105/tpc.109.065987
  • Waters MT, Brewer PB, Bussell JD, et al. The arabidopsis ortholog of Rice DWARF27 Acts Upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 2012;159:1073–1085.10.1104/pp.112.196253
  • Zhang Y, van Dijk ADJ, Scaffidi A, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol. 2014;10:1028–1033.10.1038/nchembio.1660
  • Nakamura H, Asami T. Target sites for chemical regulation of strigolactone signaling. Front Plant Sci. 2014;5:623.
  • Kitahata N, Asami T. Chemical biology of abscisic acid. J Plant Res. 2011;124:549–557.10.1007/s10265-011-0415-0
  • Ito S, Kitahata N, Umehara M, et al. A new lead chemical for strigolactone biosynthesis inhibitors. Plant Cell Physiol. 2010;51:1143–1150.10.1093/pcp/pcq077
  • Ito S, Umehara M, Hanada A, et al. Effects of triazole derivatives on strigolactone levels and growth retardation in rice. PLoS One. 2011;6:e21723.10.1371/journal.pone.0021723
  • Ito S, Umehara M, Hanada A, et al. Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signal Behav. 2013;8:e24193.10.4161/psb.24193
  • Ito S, Umehara M, Hanada A, et al. Tebuconazole derivatives are potent inhibitors of strigolactone biosynthesis. J Pestic Sci. 2013;38:147–151.10.1584/jpestics.D13-011
  • Sergeant MJ, Li J-J, Fox C, et al. Selective inhibition of carotenoid cleavage dioxygenases. J Biol Chem. 2009;284:5257–5264.10.1074/jbc.M805453200
  • Ito S, Yamagami D, Umehara M, et al. Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiol. 2017;174:1250–1259.10.1104/pp.17.00301
  • Arite T, Umehara M, Ishikawa S, et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009;50:1416–1424.10.1093/pcp/pcp091
  • Gao Z, Qian Q, Liu X, et al. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol. 2009;71:265–276.10.1007/s11103-009-9522-x
  • Liu W, Wu C, Fu Y, et al. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta. 2009;230:649–658.10.1007/s00425-009-0975-6
  • Gaiji N, Cardinale F, Prandi C, et al. The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants. BMC Res Notes. 2012;5:307.10.1186/1756-0500-5-307
  • Hamiaux C, Drummond RSM, Janssen BJ, et al. DAD2 Is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol. 2012;22:2032–2036.10.1016/j.cub.2012.08.007
  • Nakamura H, Xue Y-L, Miyakawa T, et al. Molecular mechanism of strigolactone perception by DWARF14. Nat Commun. 2013;4:2613.
  • Kagiyama M, Hirano Y, Mori T, et al. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells. 2013;18:147–160.10.1111/gtc.2013.18.issue-2
  • Zhao L-H, Zhou XE, Wu Z-S, et al. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 2013;23:436–439.10.1038/cr.2013.19
  • Zhao L-H, Zhou XE, Yi W, et al. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 2015;25:1219–1236.10.1038/cr.2015.122
  • Jiang L, Liu X, Xiong G, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature. 2013;504:401–405.10.1038/nature12870
  • Zhou F, Lin Q, Zhu L, et al. D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature. 2013;504:406–410.10.1038/nature12878
  • Wang L, Wang B, Jiang L, et al. Strigolactone signaling in arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell. 2015;27:3128–3142.10.1105/tpc.15.00605
  • Soundappan I, Bennett T, Morffy N, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in arabidopsis. Plant Cell. 2015;27:3143–3159.10.1105/tpc.15.00562
  • Liu Q, Zhang Y, Matusova R, et al. Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant. New Phytol. 2014;202:531–541.10.1111/nph.12692
  • Conn CE, Bythell-Douglas R, Neumann D, et al. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science. 2015;349:540–543.10.1126/science.aab1140
  • Yao R, Ming Z, Yan L, et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature. 2016;536:469–473.
  • Fukui K, Yamagami D, Ito S, et al. A taylor-made design of phenoxyfuranone-type strigolactone mimic. Front Plant Sci. 2017;8:936.10.3389/fpls.2017.00936
  • Tsuchiya Y, Yoshimura M, Sato Y, et al. Parasitic plants. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science. 2015;349:864–868.10.1126/science.aab3831
  • de Saint Germain A, Clavé G, Badet-Denisot M-A, et al. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol. 2016;12:787–794.10.1038/nchembio.2147
  • Holbrook-Smith D, Toh S, Tsuchiya Y, et al. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat Chem Biol. 2016;12:724–729.10.1038/nchembio.2129
  • Xiang H, Yao R, Quan T, et al. Simple β-lactones are potent irreversible antagonists for strigolactone receptors. Cell Res. 2017;25:1525–1528.10.1038/cr.2017.105
  • Mashita O, Koishihara H, Fukui K, et al. Discovery and identification of 2-methoxy-1-naphthaldehyde as a novel strigolactone-signaling inhibitor. J Pestic Sci. 2016;41:71–78.10.1584/jpestics.D16-028
  • Yao R, Wang F, Ming Z, et al. ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Res. 2017;27:838–841.10.1038/cr.2017.3
  • Shannon DA, Weerapana E. Covalent protein modification: the current landscape of residue-specific electrophiles. Curr Opin Chem Biol. 2015;24:18–26.10.1016/j.cbpa.2014.10.021
  • Waters MT, Scaffidi A, Flematti GR, et al. The origins and mechanisms of karrikin signalling. Curr Opin Plant Biol. 2013;16:667–673.10.1016/j.pbi.2013.07.005
  • Smith SM, Li J. Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol. 2014;21:23–29.10.1016/j.pbi.2014.06.003
  • De Cuyper C, Struk S, Braem L, et al. Strigolactones, karrikins and beyond. Plant Cell Environ. 2017;40:1691–1703.10.1111/pce.v40.9
  • Stanga JP, Smith SM, Briggs WR, et al. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in arabidopsis. Plant Physiol. 2013;163:318–330.10.1104/pp.113.221259
  • Morffy N, Faure L, Nelson DC. Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet. 2016;32:176–188.10.1016/j.tig.2016.01.002
  • Conn CE, Nelson DC. Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front Plant Sci. 2016;6:1219.
  • Hicks GR, Raikhel NV. Small molecules present large opportunities in plant biology. Annu Rev Plant Biol. 2012;63:261–282.10.1146/annurev-arplant-042811-105456
  • Hicks GR, Raikhel NV. Plant chemical biology: are we meeting the promise? Front Plant Sci. 2014;5:455.
  • Dejonghe W, Russinova E. Plant chemical genetics: from phenotype-based screens to synthetic biology. Plant Physiol. 2017;174:5–20.10.1104/pp.16.01805
  • Nobelprize.org. Nobel Media AB 2014. The 2017 Nobel Prize in Chemistry - Press Release. Nobel Prize. 2017.
  • Wang H-W, Lei J, Shi Y. Biological cryo-electron microscopy in China. Protein Sci. 2017;26:16–31.10.1002/pro.v26.1
  • Jonić S. Cryo-electron microscopy analysis of structurally heterogeneous macromolecular complexes. Comput Struct Biotechnol J. 2016;14:385–390.
  • Merino F, Raunser S. Electron cryo-microscopy as a tool for structure-based drug development. Angew Chemie Int Ed. 2017;56:2846–2860.10.1002/anie.201608432
  • Chockalingam K, Zhao H. Creating new specific ligand–receptor pairs for transgene regulation. Trends Biotechnol. 2005;23:333–335.10.1016/j.tibtech.2005.05.002
  • Shah K. Orthogonal chemical genetic approaches for unraveling signaling pathways. International Union Biochem. Mol Biol Life. 2005;57:397–405.10.1080/15216540500138238
  • Mosquna A, Peterson FC, Park S-Y, et al. Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proc Natl Acad Sci U S A. 2011;108:20838–20843.10.1073/pnas.1112838108
  • Miyakawa T, Tanokura M. Structural basis for the regulation of phytohormone receptors. Biosci Biotechnol Biochem. 2017;81:1261–1273.10.1080/09168451.2017.1313696
  • Shimojo E, Yamaguchi I, Murofushi N. Increase of indole-3-acetic acid in human esophagea cancer tissue. Proc Japan Acad Ser B Phys Biol Sci. 1997;73:182–185.10.2183/pjab.73.182
  • Wardman P. Indole-3-acetic acids and horseradish peroxidase: a new prodrug/enzyme combination for targeted cancer therapy. Curr Pharm Des. 2002;8:1363–1374.10.2174/1381612023394610
  • Folkes LK, Wardman P. Enhancing the efficacy of photodynamic cancer therapy by radicals from plant auxin (indole-3-acetic acid). Cancer Res. 2003;63:776–779.
  • Choi HW, Tian M, Song F, et al. Aspirin’s active metabolite salicylic acid targets high mobility group box 1 to modulate inflammatory responses. Mol Med. 2015;21:526–535.
  • Bruzzone S, Moreschi I, Usai C, et al. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci U S A. 2007;104:5759–5764.10.1073/pnas.0609379104
  • Zocchi E, Hontecillas R, Leber A, et al. Abscisic acid: a novel nutraceutical for glycemic control. Front Nutr. 2017;4:24.10.3389/fnut.2017.00024
  • Flescher E. Jasmonates in cancer therapy. Cancer Lett. 2007;245:1–10.10.1016/j.canlet.2006.03.001
  • Russo A, Espinoza CL, Caggia S, et al. A new jasmonic acid stereoisomeric derivative induces apoptosis via reactive oxygen species in human prostate cancer cells. Cancer Lett. 2012;326:199–205.10.1016/j.canlet.2012.08.025
  • Zhang M, Zhang MW, Zhang L, et al. Methyl jasmonate and its potential in cancer therapy. Plant Signal Behav. 2015;10:e1062199.10.1080/15592324.2015.1062199
  • Pollock CB, Koltai H, Kapulnik Y, et al. Strigolactones: a novel class of phytohormones that inhibit the growth and survival of breast cancer cells and breast cancer stem-like enriched mammosphere cells. Breast Cancer Res Treat. 2012;134:1041–1055.10.1007/s10549-012-1992-x
  • Mayzlish-Gati E, Laufer D, Grivas CF, et al. Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model. Cancer Biol Ther. 2015;16:1682–1688.10.1080/15384047.2015.1070982

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.