661
Views
4
CrossRef citations to date
0
Altmetric
Award Review

Adaptor functions of the Ca2+-binding protein ALG-2 in protein transport from the endoplasmic reticulum

ORCID Icon
Pages 20-32 | Received 23 Aug 2018, Accepted 13 Sep 2018, Published online: 27 Sep 2018

References

  • Maki M, Kitaura Y, Satoh H, et al Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim Biophys Acta. 2002;1600:51–60.
  • Maki M, Maemoto Y, Osako Y, et al Evolutionary and physical linkage between calpains and penta-EF-hand Ca2+-binding proteins. FEBS J. 2012;279:1414–1421.
  • Vito P, Lacanà E, D’Adamio L. Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science. 1996;271:521–525.
  • Lacanà E, Ganjei JK, Vito P, et al Dissociation of apoptosis and activation of IL-1beta-converting enzyme/Ced-3 proteases by ALG-2 and the truncated Alzheimer’s gene ALG-3. J Immunol. 1997;158:5129–5135.
  • Jang IK, Hu R, Lacaná E, et al Apoptosis-linked gene 2-deficient mice exhibit normal T-cell development and function. Mol Cell Biol. 2002;22:4094–4100.
  • Rao RV, Poksay KS, Castro-Obregon S, et al Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem. 2004;279:177–187.
  • Mahul-Mellier AL, Strappazzon F, Petiot A, et al Alix and ALG-2 are involved in tumor necrosis factor receptor 1-induced cell death. J Biol Chem. 2008;283:34954–34965.
  • Suzuki K, Dashzeveg N, Lu ZG, et al Programmed cell death 6, a novel p53-responsive gene, targets to the nucleus in the apoptotic response to DNA damage. Cancer Sci. 2012;103:1788–1794.
  • la Cour JM, Mollerup J, Winding P, et al Up-regulation of ALG-2 in hepatomas and lung cancer tissue. Am J Pathol. 2003;163:81–89.
  • la Cour JM, Høj BR, Mollerup J, et al The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability. Mol Oncol. 2008;1:431–439.
  • Aviel-Ronen S, Coe BP, Lau SK, et al Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features. Proc Natl Acad Sci USA. 2008;105:10155–10160.
  • Yamada Y, Arao T, Gotoda T, et al Identification of prognostic biomarkers in gastric cancer using endoscopic biopsy samples. Cancer Sci. 2008;99:2193–2199.
  • Krebs J, Saremaslani P, Caduff R. ALG-2: a Ca2+-binding modulator protein involved in cell proliferation and in cell death. Biochim Biophys Acta. 2002;1600:68–73.
  • Osugi K, Shibata H, Maki M. Biochemical and immunological detection of physical interactions between penta-EF-hand protein ALG-2 and its binding partners. Methods Mol Biol. 2013;963:187–200.
  • Maki M, Takahara T, Shibata H. Multifaceted roles of ALG-2 in Ca2+-Regulated membrane trafficking. Int J Mol Sci. 2016;17:E1401.
  • Yamasaki A, Tani K, Yamamoto A, et al The Ca2+-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the localization of Sec31A. Mol Biol Cell. 2006;17:4876–4887.
  • Shibata H, Suzuki H, Yoshida H, et al ALG-2 directly binds Sec31A and localizes at endoplasmic reticulum exit sites in a Ca2+-dependent manner. Biochem Biophys Res Commun. 2007;353:756–763.
  • la Cour JM, Mollerup J, Berchtold MW. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations. Biochem Biophys Res Commun. 2007;353:1063–1067.
  • Draeby I, Woods YL, la Cour JM, et al The calcium binding protein ALG-2 binds and stabilizes Scotin, a p53-inducible gene product localized at the endoplasmic reticulum membrane. Arch Biochem Biophys. 2007;467:87–94.
  • Kanadome T, Shibata H, Kuwata K, et al The calcium-binding protein ALG-2 promotes endoplasmic reticulum exit site localization and polymerization of Trk-fused gene (TFG) protein. FEBS J. 2017;284:56–76.
  • Takahara T, Inoue K, Arai Y, et al The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins. J Biol Chem. 2017;292:17057–17072.
  • Missotten M, Nichols A, Rieger K, et al Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein. Cell Death Differ. 1999;6:124–129.
  • Vito P, Pellegrini L, Guiet C, et al Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J Biol Chem. 1999;274:1533–1540.
  • Katoh K, Suzuki H, Terasawa Y, et al The penta-EF-hand protein ALG-2 interacts directly with the ESCRT-I component TSG101, and Ca2+-dependently co-localizes to aberrant endosomes with dominant-negative AAA ATPase SKD1/Vps4B. Biochem J. 2005;391:677–685.
  • Okumura M, Katsuyama AM, Shibata H, et al VPS37 isoforms differentially modulate the ternary complex formation of ALIX, ALG-2, and ESCRT-I. Biosci Biotechnol Biochem. 2013;77:1715–1721.
  • Okumura M, Takahashi T, Shibata H, et al Mammalian ESCRT-III-related protein IST1 has a distinctive met-pro repeat sequence that is essential for interaction with ALG-2 in the presence of Ca2+. Biosci Biotechnol Biochem. 2013;77:1049–1054.
  • Vergarajauregui S, Martina JA, Puertollano R. Identification of the penta-EF-hand protein ALG-2 as a Ca2+-dependent interactor of mucolipin-1. J Biol Chem. 2009;284:36357–36366.
  • Montaville P, Dai Y, Cheung CY, et al Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22. Biochim Biophys Acta. 2006;1763:1335–1343.
  • Sasaki-Osugi K, Imoto C, Takahara T, et al Nuclear ALG-2 protein interacts with Ca2+ homeostasis endoplasmic reticulum protein (CHERP) Ca2+-dependently and participates in regulation of alternative splicing of inositol trisphosphate receptor type 1 (IP3R1) pre-mRNA. J Biol Chem. 2013;288:33361–33375.
  • Matsuoka K, Orci L, Amherdt M, et al COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell. 1998;93:263–275.
  • Bannykh SI, Rowe T, Balch WE. The organization of endoplasmic reticulum export complexes. J Cell Biol. 1996;135:19–35.
  • Budnik A, Stephens DJ. ER exit sites - localization and control of COPII vesicle formation. FEBS Lett. 2009;583:3796–3803.
  • Zanetti G, Pahuja KB, Studer S, et al COPII and the regulation of protein sorting in mammals. Nat Cell Biol. 2011;14:20–28.
  • D’Arcangelo JG, Stahmer KR, Miller EA. Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim Biophys Acta. 2013;1833:2464–2472.
  • Zeuschner D, Geerts WJ, van Donselaar E, et al Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol. 2006;8:377–383.
  • Shibata H, Inuzuka T, Yoshida H, et al The ALG-2 binding site in Sec31A influences the retention kinetics of Sec31A at the endoplasmic reticulum exit sites as revealed by live-cell time-lapse imaging. Biosci Biotechnol Biochem. 2010;74:1819–1826.
  • Suzuki H, Kawasaki M, Inuzuka T, et al Structural basis for Ca2+-dependent formation of ALG-2/Alix peptide complex: Ca2+/EF3-driven arginine switch mechanism. Structure. 2008;16:1562–1573.
  • Takahashi T, Kojima K, Zhang W, et al Structural analysis of the complex between penta-EF-hand ALG-2 protein and Sec31A peptide reveals a novel target recognition mechanism of ALG-2. Int J Mol Sci. 2015;16:3677–3699.
  • Tarabykina S, Møller AL, Durussel I, et al Two forms of the apoptosis-linked protein ALG-2 with different Ca2+ affinities and target recognition. J Biol Chem. 2000;275:10514–10518.
  • Shibata H, Suzuki H, Kakiuchi T, et al Identification of Alix-type and Non-Alix-type ALG-2-binding sites in human phospholipid scramblase 3: differential binding to an alternatively spliced isoform and amino acid-substituted mutants. J Biol Chem. 2008;283:9623–9632.
  • Tanner JJ, Frey BB, Pemberton T, et al EF5 is the high-affinity Mg2+ site in ALG-2. Biochemistry. 2016;55:5128–5141.
  • Henzl MT. Ligation events influence ALG-2 dimerization. Biophys Chem. 2018;239:16–28.
  • Shugrue CA, Kolen ER, Peters H, et al Identification of the putative mammalian orthologue of Sec31P, a component of the COPII coat. J Cell Sci. 1999;112:4547–4556.
  • Tang BL, Zhang T, Low DY, et al Mammalian homologues of yeast sec31p. An ubiquitously expressed form is localized to endoplasmic reticulum (ER) exit sites and is essential for ER-Golgi transport. J Biol Chem. 2000;275:13597–13604.
  • Stankewich MC, Stabach PR, Morrow JS. Human Sec31B: a family of new mammalian orthologues of yeast Sec31p that associate with the COPII coat. J Cell Sci. 2006;119:958–969.
  • Yoshibori M, Yorimitsu T, Sato K. Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae. PLoS One. 2012;7:e40765.
  • Bi X, Corpina RA, Goldberg J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature. 2002;419:271–277.
  • Fath S, Mancias JD, Bi X, et al Structure and organization of coat proteins in the COPII cage. Cell. 2007;129:1325–1336.
  • Noble AJ, Zhang Q, O’Donnell J, et al A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry. Nat Struct Mol Biol. 2013;20:167–173.
  • Yoshihisa T, Barlowe C, Schekman R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science. 1993;259:1466–1468.
  • Antonny B, Madden D, Hamamoto S, et al Dynamics of the COPII coat with GTP and stable analogues. Nat Cell Biol. 2001;3:531–537.
  • Sato K, Nakano A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol. 2005;12:167–174.
  • Forster R, Weiss M, Zimmermann T, et al Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol. 2006;16:173–179.
  • Bi X, Mancias JD, Goldberg J. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev Cell. 2007;13:635–645.
  • la Cour JM, Schindler AJ, Berchtold MW, et al ALG-2 attenuates COPII budding in vitro and stabilizes the Sec23/Sec31A complex. PLoS One. 2013;8:e75309.
  • Shibata H, Kanadome T, Sugiura H, et al A new role for annexin A11 in the early secretory pathway via stabilizing Sec31A protein at the endoplasmic reticulum exit sites (ERES). J Biol Chem. 2015;290:4981–4993.
  • Gallione CJ, Rose JK. A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J Virol. 1985;54:374–382.
  • Doms RW, Keller DS, Helenius A, et al Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J Cell Biol. 1987;105:1957–1969.
  • Cho HJ, Mook-Jung I. O-GlcNAcylation regulates endoplasmic reticulum exit sites through Sec31A modification in conventional secretory pathway. FASEB J. 2018 Apr 17. DOI:10.1096/fj.201701523R
  • Helm JR, Bentley M, Thorsen KD, et al Apoptosis-linked gene-2 (ALG-2)/Sec31 interactions regulate endoplasmic reticulum (ER)-to-Golgi transport: a potential effector pathway for luminal calcium. J Biol Chem. 2014;289:23609–23628.
  • Rayl M, Truitt M, Held A, et al Penta-EF-hand protein peflin is a negative regulator of ER-to-golgi transport. PLoS One. 2016;11:e0157227.
  • Jones B, Jones EL, Bonney SA, et al Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet. 2003;34:29–31.
  • Boyadjiev SA, Fromme JC, Ben J, et al Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat Genet. 2006;38:1192–1197.
  • Boyadjiev SA, Kim SD, Hata A, et al Cranio-lenticulo-sutural dysplasia associated with defects in collagen secretion. Clin Genet. 2011;80:169–176.
  • Fromme JC, Ravazzola M, Hamamoto S, et al The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev Cell. 2007;13:623–634.
  • McCaughey J, Stephens DJ. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol. 2018 Jun;18. DOI:10.1007/s00418-018-1689-2
  • Aridor M. COPII gets in shape: lessons derived from morphological aspects of early secretion. Traffic. 2018 Jul;6. DOI:10.1111/tra.12603
  • Saito K, Katada T. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci. 2015;72:3709–3720.
  • Saito K, Chen M, Bard F, et al TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell. 2009;136:891–902.
  • Ishikawa Y, Ito S, Nagata K, et al Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. Proc Natl Acad Sci USA. 2016;113:E6036–E6044.
  • Saito K, Yamashiro K, Shimazu N, et al Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. J Cell Biol. 2014;206:751–762.
  • Venditti R, Scanu T, Santoro M, et al Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science. 2012;337:1668–1672.
  • Saito K, Yamashiro K, Ichikawa Y, et al cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol Biol Cell. 2011;22:2301–2308.
  • Malhotra V, Erlmann P. Protein export at the ER: loading big collagens into COPII carriers. Embo J. 2011;30:3475–3480.
  • Jin L, Pahuja KB, Wickliffe KE, et al Ubiquitin-dependent regulation of COPII coat size and function. Nature. 2012;482:495–500.
  • McGourty CA, Akopian D, Walsh C, et al Regulation of the CUL3 ubiquitin ligase by a calcium-dependent co-adaptor. Cell. 2016;167:525–538.
  • Gorur A, Yuan L, Kenny SJ, et al COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol. 2017;216:1745–1759.
  • Katoh K, Shibata H, Suzuki H, et al The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem. 2003;278:39104–39113.
  • Strack B, Calistri A, Craig S, et al AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 2003;114:689–699.
  • von Schwedler UK, Stuchell M, Müller B, et al The protein network of HIV budding. Cell. 2003;114:701–713.
  • Hanson PI, Roth R, Lin Y, et al Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol. 2008;180:389–402.
  • Pires R, Hartlieb B, Signor L, et al A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure. 2009;17:843–856.
  • Okumura M, Ichioka F, Kobayashi R, et al Penta-EF-hand protein ALG-2 functions as a Ca2+-dependent adaptor that bridges Alix and TSG101. Biochem Biophys Res Commun. 2009;386:237–241.
  • Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6:449–461.
  • Sudo T, Hidaka H. Regulation of calcyclin (S100A6) binding by alternative splicing in the N-terminal regulatory domain of annexin XI isoforms. J Biol Chem. 1998;273:6351–6357.
  • Brownawell AM, Creutz CE. Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). J Biol Chem. 1997;272:22182–22190.
  • Satoh H, Shibata H, Nakano Y, et al ALG-2 interacts with the amino-terminal domain of annexin XI in a Ca2+-dependent manner. Biochem Biophys Res Commun. 2002;291:1166–1172.
  • Satoh H, Nakano Y, Shibata H, et al The penta-EF-hand domain of ALG-2 interacts with amino-terminal domains of both annexin VII and annexin XI in a Ca2+-dependent manner. Biochim Biophys Acta. 2002;1600:61–67.
  • Lizarbe MA, Barrasa JI, Olmo N, et al Annexin-phospholipid interactions. Functional implications. Int J Mol Sci. 2013;14:2652–2683.
  • Boye TL, Jeppesen JC, Maeda K, et al Annexins induce curvature on free-edge membranes displaying distinct morphologies. Sci Rep. 2018;8:10309.
  • Koreishi M, Yu S, Oda M, et al CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking. PLoS One. 2013;8:e54382.
  • Smith BN, Topp SD, Fallini C, et al Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci Transl Med. 2017;9:eaad9157.
  • Witte K, Schuh AL, Hegermann J, et al TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13:550–558.
  • Hanna MG 4th, Block S, Frankel EB, et al TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments. Proc Natl Acad Sci USA. 2017;114:E7707–E7716.
  • Greco A, Mariani C, Miranda C, et al The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995;15:6118–6127.
  • Greco A, Fusetti L, Miranda C, et al Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene. 1998;16:809–816.
  • Beetz C, Johnson A, Schuh AL, et al Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc Natl Acad Sci USA. 2013;110:5091–5096.
  • Osugi K, Suzuki H, Nomura T, et al Identification of the P-body component PATL1 as a novel ALG-2-interacting protein by in silico and far-Western screening of proline-rich proteins. J Biochem. 2012;151:657–666.
  • Hanna MG, Peotter JL, Frankel EB, et al Membrane transport at an organelle interface in the early secretory pathway: take your coat off and stay a while: evolution of the metazoan early secretory pathway. Bioessays. 2018;40:e1800004.
  • Johnson A, Bhattacharya N, Hanna M, et al TFG clusters COPII-coated transport carriers and promotes early secretory pathway organization. EMBO J. 2015;34:811–827.
  • Lefebvre C, Terret ME, Djiane A, et al Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol. 2002;157:603–613.
  • Takahara T, Arai Y, Kono Y, et al A microtubule-associated protein MAP1B binds to and regulates localization of a calcium-binding protein ALG-2. Biochem Biophys Res Commun. 2018;497:492–498.
  • Koonce MP, Tikhonenko I. Functional elements within the dynein microtubule-binding domain. Mol Biol Cell. 2000;11:523–529.
  • Watson P, Forster R, Palmer KJ, et al Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol. 2005;7:48–55.
  • Scheffer LL, Sreetama SC, Sharma N, et al Mechanism of Ca2⁺-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun. 2014;5:5646.
  • Skowyra ML, Schlesinger PH, Naismith TV, et al Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 2018;360:eaar5078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.