242
Views
13
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

MiR‐219a‐2-3p suppresses cell proliferation and promotes apoptosis by targeting MDM2/p53 in pituitary adenomas cells

, , , , &
Pages 911-918 | Received 25 Sep 2019, Accepted 06 Jan 2020, Published online: 20 Jan 2020

References

  • Ezzat S, Asa SL, Couldwell WT, et al. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101(3):613–619. PubMed PMID: 15374075
  • Zhu X, Wang Y, Zhao X, et al. Incidence of pituitary apoplexy and its risk factors in Chinese people: a database study of patients with pituitary adenoma. PloS One. 2015;10(9):e0139088. PubMed PMID: 26407083
  • Feng Y, Mao ZG, Wang X, et al. MicroRNAs and target genes in pituitary adenomas. Hormone Metab Res. 2018;50(3):179–192. PubMed PMID: 29523005
  • Yang Q, Li X. Molecular network basis of invasive pituitary adenoma: a review. Front Endocrinol (Lausanne). 2019;10(undefined):7. PubMed PMID: 30733705
  • Gao C, Xiao G, Piersigilli A, et al. Context-dependent roles of MDMX (MDM4) and MDM2 in breast cancer proliferation and circulating tumor cells. BCR. 2019;21(1):5. PubMed PMID: 30642351
  • Li L, Zhang R, Li SJ. Long noncoding RNA SNHG14 promotes ovarian cancer cell proliferation and metastasis via sponging miR-219a-5p. Eur Rev Med Pharmacol Sci. 2019;23(10):4136–4142. PubMed PMID: 31173283
  • Wang L, Yu M, Zhao S. lncRNA MEG3 modified epithelial-mesenchymal transition of ovarian cancer cells by sponging miR-219a-5p and regulating EGFR. J Cell Biochem. 2019;undefined(undefined):undefined. PubMed PMID: 31161607
  • Rao C, Miao X, Zhao G, et al. MiR-219a-5p enhances cisplatin sensitivity of human non-small cell lung cancer by targeting FGF9. Biomed Pharmacother. 2019;114(undefined):108662. PubMed PMID: 30999114
  • He Z, Chen L, Hu X, et al. Next-generation sequencing of microRNAs reveals a unique expression pattern in different types of pituitary adenomas. Endocr J. 2019 Aug 29;66(8):709–722. PubMed PMID: 31061247.
  • Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24(17):2899–2908. PubMed PMID: 15838523
  • Suliman M, Royds J, Cullen D, et al. Mdm2 and the p53 pathway in human pituitary adenomas. Clin Endocrinol (Oxf). 2001;54(3):317–325. PubMed PMID: 11298083
  • Gentilin E, Tagliati F, Filieri C, et al. miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology. 2013;154(5):1690–1700. PubMed PMID: 23525216
  • Yu C, Li J, Sun F, et al. Expression and clinical significance of miR-26a and Pleomorphic Adenoma Gene 1 (PLAG1) in invasive pituitary adenoma. Med Sci Monit. 2016;22:(undefined):5101–5108. PubMed PMID: 28012286
  • Liang HQ, Wang RJ, Diao CF, et al. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget. 2015;6(30):29413–29427. PubMed PMID: 26320179
  • Yang Z, Zhang T, Wang Q, et al. Overexpression of microRNA-34a attenuates proliferation and induces apoptosis in pituitary adenoma cells via SOX7. Mol Ther Oncolytics. 2018;10(undefined):40–47. PubMed PMID: 30109259
  • Trivellin G, Butz H, Delhove J, et al. MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am J Physiol Endocrinol Metab. 2012;303(6):E708–19. PubMed PMID: 22811466
  • Wei Z, Zhou C, Liu M, et al. MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary. 2015;18(5):710–721. PubMed PMID: 25862551
  • Butz H, Likó I, Czirják S, et al. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2011;14(2):112–124. PubMed PMID: 21063788
  • Garbicz F, Mehlich D, Rak B, et al. Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology. Pituitary. 2017;20(4):450–463. PubMed PMID: 28432562
  • Momand J, Jung D, Wilczynski S, et al. The MDM2 gene amplification database. Nucleic Acids Res. 1998;26(15):3453–3459. PubMed PMID: 9671804
  • Wu D, Niu X, Tao J, et al. MicroRNA-379-5p plays a tumor-suppressive role in human bladder cancer growth and metastasis by directly targeting MDM2. Oncol Rep. 2017;37(6):3502–3508. PubMed PMID: 28498468
  • Turbin DA, Cheang MC, Bajdik CD, et al. MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol. 2006;19(1):69–74. PubMed PMID: 16258514
  • Patterson DM, Gao D, Trahan DN, et al. Effect of MDM2 and vascular endothelial growth factor inhibition on tumor angiogenesis and metastasis in neuroblastoma. Angiogenesis. 2011;14(3):255–266. PubMed PMID: 21484514
  • Yao X, Gao H, Li C, et al. Analysis of Ki67, HMGA1, MDM2, and RB expression in nonfunctioning pituitary adenomas. J Neurooncol. 2017;132(2):199–206. PubMed PMID: 28255749

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.