1,053
Views
19
CrossRef citations to date
0
Altmetric
Award Review

Cyanobacterial multi-copy chromosomes and their replication

Pages 1309-1321 | Received 30 Nov 2019, Accepted 23 Feb 2020, Published online: 11 Mar 2020

References

  • Oliver NJ, Rabinovitch-Deere CA, Carroll AL, et al. Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol. 2016;35:43–50.
  • Nozzi NE, Oliver JW, Atsumi S. Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol. 2013;1:7.
  • Watanabe S, Ozawa H, Kato H, et al. Carbon-free production of 2-deoxy-scyllo-inosose (DOI) in cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem. 2018;82(1):161–165.
  • Binder BJ, Chisholm SW. Cell cycle regulation in marine Synechococcus sp. strains. Appl Environ Microbiol. 1995;61(2):708–717.
  • Burbage CD, Binder BJ. Relationship between cell cycle and light-limited growth rate in oceanic Prochlorococcus (MIT9312) and Synechococcus (WH8103) (Cyanobacteria). J Phycol. 2007;43:2.
  • Mori T, Binder B, Johnson CH. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A. 1996;93(19):10183–10188.
  • Mann N, Carr NG. Control of macromolecular composition and cell division in the blue-green algae Anacystis nidulans. J Gen Microbiol. 1974;83(2):399–405.
  • Minton KW. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol. 1994;13(1):9–15.
  • Ohtani N, Tomita M, Itaya M. An extreme thermophile, Thermus thermophilus, is a polyploid bacterium. J Bacteriol. 2010;192(20):5499–5505.
  • Komaki K, Ishikawa H. Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol. 1999;48(6):717–722.
  • Tobiason DM, Seifert HS. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol. 2006;4(6):e185.
  • Bresler V, Montgomery WL, Fishelson L, et al. Gigantism in a bacterium, Epulopiscium fishelsoni, correlates with complex patterns in arrangement, quantity, and segregation of DNA. J Bacteriol. 1998;180(21):5601–5611.
  • Bendich AJ. Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays. 1987;6(6):279–282.
  • Kuroiwa T. The replication, the replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol. 1991;128:1–62.
  • Hildenbrand C, Stock T, Lange C, et al. Genome copy numbers and gene conversion in methanogenic archaea. J Bacteriol. 2011;193(3):734–743.
  • Breuert S, Allers T, Spohn G, et al. Regulated polyploidy in halophilic archaea. PLoS One. 2006;1:e92.
  • Spaans SK, van der Oost J, Kengen SW. The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Extremophiles. 2015;19(4):741–750.
  • Liu X, Miao D, Zhang F, et al. Characterization of the minimal replicon of pHM300 and independent copy number control of major and minor chromosomes of Haloferax mediterranei. FEMS Microbiol Lett. 2013;339(1):66–74.
  • Watanabe S, Ohbayashi R, Kanesaki Y, et al. Intensive DNA replication and metabolism during the lag phase in cyanobacteria. PLoS One. 2015;10(9):e0136800.
  • Watanabe S, Ohbayashi R, Shiwa Y, et al. Light-dependent and asynchronous replication of cyanobacterial multi-copy chromosomes. Mol Microbiol. 2012;83(4):856–865.
  • Griese M, Lange C, Soppa J. Ploidy in cyanobacteria. FEMS Microbiol Lett. 2011;323(2):124–131.
  • Labarre J, Chauvat F, Thuriaux P. Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol. 1989;171(6):3449–3457.
  • Zerulla K, Ludt K, Soppa J. The ploidy level of Synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. Microbiology. 2016;162(5):730–739.
  • Klotz A, Georg J, Bučinská L, et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol. 2016;26(21):2862–2872.
  • Gärtner K, Klähn S, Watanabe S, et al. Cytosine N4-methylation via M.Ssp6803II is involved in the regulation of transcription, fine-tuning of DNA replication and DNA repair in the cyanobacterium. Front Microbiol. 2019;10:1233.
  • Sargent EC, Hitchcock A, Johansson SA, et al. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol Lett. 2016;363:21.
  • Latifi A, Ruiz M, Zhang CC. Oxidative stress in cyanobacteria. FEMS Microbiol Rev. 2009;33(2):258–278.
  • Carpenter E, Subramaniam A, Capone D. Biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean. Deep-Sea Res Pt I. 2004;52(9):1787–1788.
  • Ohbayashi R, Nakamachi A, Hatakeyama TS, et al. Coordination of polyploid chromosome replication with cell size and growth in a cyanobacterium. MBio. 2019;10:2.
  • Zheng XY, O’Shea EK. Cyanobacteria maintain constant protein concentration despite genome copy-number variation. Cell Rep. 2017;19(3):497–504.
  • Foster JS, Singh AK, Rothschild LJ, et al. Growth-phase dependent differential gene expression in Synechocystis sp. strain PCC 6803 and regulation by a group 2 sigma factor. Arch Microbiol. 2007;187(4):265–279.
  • Broedel SE, Wolf RE. Growth-phase-dependent induction of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase in the cyanobacterium Synechococcus sp. PCC7942. Gene. 1991;109(1):71–79.
  • Tandeau de Marsac N, Houmard J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev. 1993;104(1):119–189.
  • Zerulla K, Soppa J. Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol. 2014;5:274.
  • Ludt K, Soppa J. Polyploidy in halophilic archaea: regulation, evolutionary advantages, and gene conversion. Biochem Soc Trans. 2019;47(3):933–944.
  • Golden SS, Canales SR. Cyanobacterial circadian clocks–timing is everything. Nat Rev Microbiol. 2003;1(3):191–199.
  • Yang Q, Pando BF, Dong G, et al. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science. 2010;327(5972):1522–1526.
  • Dong G, Golden SS. How a cyanobacterium tells time. Curr Opin Microbiol. 2008;11(6):541–546.
  • Mori T. Cell division cycles and circadian rhythms. In: Ditty J, Mackey S, Johnson C, editors. Bacterial circadian programs. Berlin:Springer; 2009. p. 183–204.
  • Ochoa de Alda JA, Esteban R, Diago ML, et al. The plastid ancestor originated among one of the major cyanobacterial lineages. Nat Commun. 2014;5:4937.
  • Powikrowska M, Oetke S, Jensen PE, et al. Dynamic composition, shaping and organization of plastid nucleoids. Front Plant Sci. 2014;5:424.
  • Sakai A, Takano H, Kuroiwa T. Organelle nuclei in higher plants: structure, composition, function, and evolution. Int Rev Cytol. 2004;238:59–118.
  • Kabeya Y, Miyagishima SY. Chloroplast DNA replication is regulated by the redox state independently of chloroplast division in Chlamydomonas reinhardtii. Plant Physiol. 2013;161(4):2102–2112.
  • Baumgartner BJ, Rapp JC, Mullet JE. Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol. 1989;89(3):1011–1018.
  • Lamppa GK, Elliot LV, Bendich AJ. Changes in chloroplast number during pea leaf development: an analysis of a protoplast population. Planta. 1980;148(5):437–443.
  • Boffey SA, Ellis JR, Selldén G, et al. Chloroplast division and DNA synthesis in light-grown wheat leaves. Plant Physiol. 1979;64(3):502–505.
  • Oldenburg DJ, Bendich AJ. Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol. 2004;344(5):1311–1330.
  • Rowan BA, Oldenburg DJ, Bendich AJ. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot. 2010;61(10):2575–2588.
  • Morley SA, Nielsen BL. Chloroplast DNA copy number changes during plant development in Organelle DNA polymerase mutants. Front Plant Sci. 2016;7:57.
  • Watanabe S, Noda A, Ohbayashi R, et al. ParA-like protein influences the distribution of multi-copy chromosomes in cyanobacterium Synechococcus elongatus PCC 7942. Microbiology. 2018;164(1):45–56.
  • Murata K, Hagiwara S, Kimori Y, et al. Ultrastructure of compacted DNA in cyanobacteria by high-voltage cryo-electron tomography. Sci Rep. 2016;6:34934.
  • Long BM, Badger MR, Whitney SM, et al. Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem. 2007;282(40):29323–29335.
  • Lee PS, Grossman AD. The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol Microbiol. 2006;60(4):853–869.
  • Real G, Autret S, Harry EJ, et al. Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Mol Microbiol. 2005;55(2):349–367.
  • Vallet-Gely I, Boccard F. Chromosomal organization and segregation in Pseudomonas aeruginosa. PLoS Genet. 2013;9(5):e1003492.
  • Fogel MA, Waldor MK. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 2006;20(23):3269–3282.
  • Kadoya R, Baek JH, Sarker A, et al. Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J Bacteriol. 2011;193(7):1504–1514.
  • Savage DF, Afonso B, Chen AH, et al. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science. 2010;327(5970):1258–1261.
  • MacCready JS, Hakim P, Young EJ, et al. Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. Elife. 2018;7:e39723.
  • Schumacher MA, Henderson M, Zhang H. Structures of maintenance of carboxysome distribution Walker-box McdA and McdB adaptor homologs. Nucleic Acids Res. 2019;47(11):5950–5962.
  • Graumann PL. SMC proteins in bacteria: condensation motors for chromosome segregation? Biochimie. 2001;83(1):53–59.
  • Lobry JR. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol. 1996;13(5):660–665.
  • Frank AC, Lobry JR. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene. 1999;238(1):65–77.
  • Luo H, Gao F. DoriC 10.0: an updated database of replication origins in prokaryotic genomes including chromosomes and plasmids. Nucleic Acids Res. 2019;47(D1):D74–D77.
  • Arakawa K, Tomita M. Measures of compositional strand bias related to replication machinery and its applications. Curr Genomics. 2012;13(1):4–15.
  • Arakawa K, Suzuki H, Tomita M. Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index. BMC Genomics. 2009;10:640.
  • Arakawa K, Tomita M. The GC skew index: a measure of genomic compositional asymmetry and the degree of replicational selection. Evol Bioinform Online. 2007;3:159–168.
  • Arakawa K, Kido N, Oshita K, et al. G-language genome analysis environment with REST and SOAP web service interfaces. Nucleic Acids Res. 2010;38(Web Server issue):W700–5.
  • Liu Y, Tsinoremas NF. An unusual gene arrangement for the putative chromosome replication origin and circadian expression of dnaN in Synechococcus sp. strain PCC 7942. Gene. 1996;172(1):105–109.
  • Zhou Y, Chen WL, Wang L, et al. Identification of the oriC region and its influence on heterocyst development in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Microbiology. 2011;157(Pt 7):1910–1919.
  • Ohbayashi R, Watanabe S, Ehira S, et al. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution. Isme J. 2016;10(5):1113–1121.
  • Gao F. Bacteria may have multiple replication origins. Front Microbiol. 2015;6:324.
  • Gao F. Recent advances in the identification of replication origins based on the Z-curve method. Curr Genomics. 2014;15(2):104–112.
  • Nielsen BL, Cupp JD, Brammer J. Mechanisms for maintenance, replication, and repair of the chloroplast genome in plants. J Exp Bot. 2010;61(10):2535–2537.
  • Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010;186(2):299–317.
  • Chiu WL, Sears BB. Electron microscopic localization of replication origins in oenothera chloroplast DNA. Mol Gen Genet. 1992;232(1):33–39.
  • Kunnimalaiyaan M, Nielsen BL. Fine mapping of replication origins (Ori A and ori B) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 1997;25(18):3681–3686.
  • Kolodner RD, Tewari KK. Chloroplast DNA from higher plants replicates by both the cairns and the rolling circle mechanism. Nature. 1975;256(5520):708–711.
  • Wang JD, Levin PA. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol. 2009;7(11):822–827.
  • Yoshikawa H, O’Sullivan A, Sueoka N. Sequential replication of the Bacillus subtilis chromosome. 3. Regulation of initiation. Proc Natl Acad Sci U S A. 1964;52:973–980.
  • Srivatsan A, Han Y, Peng J, et al. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet. 2008;4(8):e1000139.
  • Kono N, Arakawa K, Sato M, et al. Undesigned selection for replication termination of bacterial chromosomes. J Mol Biol. 2014;426(16):2918–2927.
  • Chen AH, Afonso B, Silver PA, et al. Spatial and temporal organization of chromosome duplication and segregation in the cyanobacterium Synechococcus elongatus PCC 7942. PLoS One. 2012;7(10):e47837.
  • Jain IH, Vijayan V, O’Shea EK. Spatial ordering of chromosomes enhances the fidelity of chromosome partitioning in cyanobacteria. Proc Natl Acad Sci U S A. 2012;109(34):13638–13643.
  • Berlatzky IA, Rouvinski A, Ben-Yehuda S. Spatial organization of a replicating bacterial chromosome. Proc Natl Acad Sci U S A. 2008;105(37):14136–14140.
  • Niki H, Yamaichi Y, Hiraga S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 2000;14(2):212–223.
  • Schneider D, Fuhrmann E, Scholz I, et al. Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biol. 2007;8:39.
  • Rubin BE, Wetmore KM, Price MN, et al. The essential gene set of a photosynthetic organism. Proc Natl Acad Sci U S A. 2015;112(48):E6634–6643.
  • Katayama T, Ozaki S, Keyamura K, et al. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol. 2010;8(3):163–170.
  • Skarstad K, Katayama T. Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol. 2013;5(4):a012922.
  • Skarstad K, Boye E, Steen HB. Timing of initiation of chromosome replication in individual Escherichia coli cells. Embo J. 1986;5(7):1711–1717.
  • Keyamura K, Abe Y, Higashi M, et al. DiaA dynamics are coupled with changes in initial origin complexes leading to helicase loading. J Biol Chem. 2009;284(37):25038–25050.
  • Keyamura K, Fujikawa N, Ishida T, et al. The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP DnaA-specific initiation complexes. Genes Dev. 2007;21(16):2083–2099.
  • Ishida T, Akimitsu N, Kashioka T, et al. DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem. 2004;279(44):45546–45555.
  • Richter S, Hagemann M, Messer W. Transcriptional analysis and mutation of a dnaA-like gene in Synechocystis sp. strain PCC 6803. J Bacteriol. 1998;180(18):4946–4949.
  • Ran L, Larsson J, Vigil-Stenman T, et al. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One. 2010;5(7):e11486.
  • Nakayama T, Kamikawa R, Tanifuji G, et al. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci U S A. 2014;111(31):11407–11412.
  • Moriyama T, Sato N. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Front Plant Sci. 2014;5:480.
  • Casadesús J. Bacterial DNA methylation and methylomes. Adv Exp Med Biol. 2016;945:35–61.
  • Wion D, Casadesús J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol. 2006;4(3):183–192.
  • Erova TE, Kosykh VG, Sha J, et al. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA). Gene. 2012;498(2):280–287.
  • Løbner-Olesen A, Skovgaard O, Marinus MG. Dam methylation: coordinating cellular processes. Curr Opin Microbiol. 2005;8(2):154–160.
  • McGraw BR, Marinus MG. Isolation and characterization of Dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12. Mol Gen Genet. 1980;178(2):309–315.
  • Marinus MG. Recombination is essential for viability of an Escherichia coli dam (DNA adenine methyltransferase) mutant. J Bacteriol. 2000;182(2):463–468.
  • Glickman BW, Radman M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A. 1980;77(2):1063–1067.
  • Harinarayanan R, Gowrishankar J. A dnaC mutation in Escherichia coli that affects copy number of ColE1-like plasmids and the PriA-PriB (but not Rep-PriC) pathway of chromosomal replication restart. Genetics. 2004;166(3):1165–1176.
  • Raghunathan N, Goswami S, Leela JK, et al. A new role for Escherichia coli Dam DNA methylase in prevention of aberrant chromosomal replication. Nucleic Acids Res. 2019;47(11):5698–5711.
  • Demarre G, Chattoraj DK. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle. PLoS Genet. 2010;6(5):e1000939.
  • Egan ES, Waldor MK. Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell. 2003;114(4):521–530.
  • Val ME, Soler-Bistué A, Bland MJ, et al. Management of multipartite genomes: the Vibrio cholerae model. Curr Opin Microbiol. 2014;22:120–126.
  • Duigou S, Knudsen KG, Skovgaard O, et al. Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB. J Bacteriol. 2006;188(17):6419–6424.
  • Scharnagl M, Richter S, Hagemann M. The cyanobacterium Synechocystis sp. strain PCC 6803 expresses a DNA methyltransferase specific for the recognition sequence of the restriction endonuclease PvuI. J Bacteriol. 1998;180(16):4116–4122.
  • Hagemann M, Gärtner K, Scharnagl M, et al. Identification of the DNA methyltransferases establishing the methylome of the cyanobacterium Synechocystis sp. PCC 6803. DNA Res. 2018;25(4):343–352.
  • Matveyev AV, Young KT, Meng A, et al. DNA methyltransferases of the cyanobacterium Anabaena PCC 7120. Nucleic Acids Res. 2001;29(7):1491–1506.
  • Ngernprasirtsiri J, Kobayashi H, Akazawa T. DNA methylation as a mechanism of transcriptional regulation in nonphotosynthetic plastids in plant cells. Proc Natl Acad Sci U S A. 1988;85(13):4750–4754.
  • Ngernprasirtsiri J, Kobayashi H, Akazawa T. DNA methylation occurred around lowly expressed genes of plastid DNA during tomato fruit development. Plant Physiol. 1988;88(1):16–20.
  • Ngernprasirtsiri J, Chollet R, Kobayashi H, et al. DNA methylation and the differential expression of C4 photosynthesis genes in mesophyll and bundle sheath cells of greening maize leaves. J Biol Chem. 1989;264(14):8241–8248.
  • Fojtová M, Kovarík A, Matyásek R. Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Sci. 2001;160(4):585–593.
  • Ahlert D, Stegemann S, Kahlau S, et al. Insensitivity of chloroplast gene expression to DNA methylation. Mol Genet Genomics. 2009;282(1):17–24.
  • Marano MR, Carrillo N. Chromoplast formation during tomato fruit ripening. No evidence for plastid DNA methylation. Plant Mol Biol. 1991;16(1):11–19.
  • Tomas R, Vera A, Martin M, et al. Changes in protein synthesis without evidence of DNA methylation in barley chloroplasts during leaf growth and development. Plant Sci. 1992;85(1):71–77.
  • Nishiyama R, Wada Y, Mibu M, et al. Role of a nonselective de novo DNA methyltransferase in maternal inheritance of chloroplast genes in the green alga, Chlamydomonas reinhardtii. Genetics. 2004;168(2):809–816.
  • Nishiyama R, Ito M, Yamaguchi Y, et al. A chloroplast-resident DNA methyltransferase is responsible for hypermethylation of chloroplast genes in Chlamydomonas maternal gametes. Proc Natl Acad Sci U S A. 2002;99(9):5925–5930.
  • Nishimura Y, Misumi O, Matsunaga S, et al. The active digestion of uniparental chloroplast DNA in a single zygote of Chlamydomonas reinhardtii is revealed by using the optical tweezer. Proc Natl Acad Sci U S A. 1999;96(22):12577–12582.
  • Nishimura Y, Misumi O, Kato K, et al. An mt(+) gamete-specific nuclease that targets mt(-) chloroplasts during sexual reproduction in C. reinhardtii. Genes Dev. 2002;16(9):1116–1128.
  • Umen JG, Goodenough UW. Chloroplast DNA methylation and inheritance in Chlamydomonas. Genes Dev. 2001;15(19):2585–2597.
  • Ohbayashi R, Yamamoto JY, Watanabe S, et al. Variety of DNA replication activity among cyanobacteria correlates with distinct respiration activity in the dark. Plant Cell Physiol. 2017;58(2):279–286.
  • Ohbayashi R, Watanabe S, Kanesaki Y, et al. DNA replication depends on photosynthetic electron transport in cyanobacteria. FEMS Microbiol Lett. 2013;344(2):138–144.
  • Maciąg M, Nowicki D, Janniere L, et al. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microb Cell Fact. 2011;10:19.
  • Jannière L, Canceill D, Suski C, et al. Genetic evidence for a link between glycolysis and DNA replication. PLoS One. 2007;2(5):e447.
  • Mills KV, Perler FB. The mechanism of intein-mediated protein splicing: variations on a theme. Protein Pept Lett. 2005;12(8):751–755.
  • Novikova O, Topilina N, Belfort M. Enigmatic distribution, evolution, and function of inteins. J Biol Chem. 2014;289(21):14490–14497.
  • Topilina NI, Novikova O, Stanger M, et al. Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Res. 2015;43(13):6631–6648.
  • Lennon CW, Stanger M, Belfort M. Protein splicing of a recombinase intein induced by ssDNA and DNA damage. Genes Dev. 2016;30(24):2663–2668.
  • Reitter JN, Cousin CE, Nicastri MC, et al. Salt-dependent conditional protein splicing of an intein from Halobacterium salinarum. Biochemistry. 2016;55(9):1279–1282.
  • Pietrokovski S. A new intein in cyanobacteria and its significance for the spread of inteins. Trends Genet. 1996;12(8):287–288.
  • Williams NK, Prosselkov P, Liepinsh E, et al. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J Biol Chem. 2002;277(10):7790–7798.
  • Liu XQ, Hu Z. Identification and characterization of a cyanobacterial DnaX intein. FEBS Lett. 1997;408(3):311–314.
  • Gorbalenya AE. Non-canonical inteins. Nucleic Acids Res. 1998;26(7):1741–1748.
  • Kopf M, Klähn S, Pade N, et al. Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803. DNA Res. 2014;21(3):255–266.
  • Nakamura Y, Kaneko T, Sato S, et al. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res. 2003;10(4):137–145.
  • Wu H, Hu Z, Liu XQ. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. 1998;95(16):9226–9231.
  • Caspi J, Amitai G, Belenkiy O, et al. Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. 2003;50(5):1569–1577.
  • Gupta RS, Mathews DW. Signature proteins for the major clades of cyanobacteria. BMC Evol Biol. 2010;10:24.
  • Shah NH, Dann GP, Vila-Perelló M, et al. Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc. 2012;134(28):11338–11341.
  • Cheriyan M, Pedamallu CS, Tori K, et al. Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues. J Biol Chem. 2013;288(9):6202–6211.
  • Zettler J, Schütz V, Mootz HD. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 2009;583(5):909–914.
  • Kim WJ, Lee SM, Um Y, et al. Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942. Front Plant Sci. 2017;8:293.
  • Schaerli Y, Gili M, Isalan M. A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res. 2014;42(19):12322–12328.
  • Stevens AJ, Sekar G, Shah NH, et al. A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A. 2017;114(32):8538–8543.
  • Kelley DS, Lennon CW, Li Z, et al. Mycobacterial DnaB helicase intein as oxidative stress sensor. Nat Commun. 2018;9(1):4363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.