334
Views
1
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Purification and characterization of formaldehyde dismutases of Methylobacterium sp. FD1

, , &
Pages 1444-1450 | Received 25 Feb 2020, Accepted 01 Apr 2020, Published online: 11 Apr 2020

References

  • Yonemitsu H, Shiozaki E, Hitotsuda F, et al. Biodegradation of high concentrations of formaldehyde by lyophilized cells of Methylobacterium sp. FD1. Biosci Biotechnol Biochem. 2016;80(11):2264–2270..
  • Tanaka N, Kusakabe Y, Ito K, et al. Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida : the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases. J Mol Biol. 2002;324(3):519–533. .
  • Yonemitsu H, Kikuchi Y. Biodegradation of high concentrations of formaldehyde using Escherichia coli expressing the formaldehyde dismutase gene of Methylobacterium sp. FD1. Biosci Biotechnol Biochem. 2018;82(1):49–56.
  • Yanase H, Noda H, Aoki K, et al. Cloning, sequence analysis, and expression of the gene encoding formaldehyde dismutase from Pseudomonas putida F61. Biosci Biotechnol Biochem. 1995;59(2):197–202. .
  • Blaschke L, Wagner W, Werkmeister C, et al. Development of a simplified purification method for a novel formaldehyde dismutase variant from Pseudomonas putida J3. J Biotechnol. 2017;241:69–75.
  • Kato N, Shirakawa K, Kobayashi H, et al. The dismutation of aldehydes by a bacterial enzyme. Agric Biol Chem. 1983;47:39–46.
  • Kato N, Kobayashi H, Shimao M, et al. Properties of formaldehyde dismutation catalyzing enzyme of Pseudomonas putida F61. Agric Biol Chem. 1984;48:2017–2023.
  • Kato N, Yamagami T, Shimao M, et al. Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61. Eur J Biochem. 1986;156(1):59–64. .
  • Blaschke L. Heterologe Expression, Charakterisierung und Anwendung einer Formaldehyd-Dismutase zur Gewinnung von Methanol aus Methan. Universität Stuttgart;2017, Thesis.
  • Haldimann A, Daniels LL, Wanner BL. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of theEscherichia coli phosphate regulon. J. Bacteiol. 1998;180(5):1277–1286. .
  • Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953;55(3):416–421.
  • Dunn MF, Bernhard SA. Rapid kinetic evidence for adduct formation between the substrate analog p-nitroso-N, N-dimethylaniline and reduced nicotinamide-adenine dinucleotide during enzymic reduction. Biochem. 1971;10(24):4569–4575.
  • Ito K, Takahashi M, Yoshimoto T, et al. Cloning and high-level expression of the glutathione-independent formaldehyde dehydrogenase gene from Pseudomonas putida. J Bacteriol. 1994;176(9):2483–2491. .
  • Bystrykh LV, Vonck J, van Bruggen EF, et al. Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N, N’-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol. 1993;175(6):1814–1822. .
  • Bystrykh LV, Govorukhina NI, van Ophem PW, et al. Formaldehyde dismutase activities in Gram-positive bacteria oxidizing methanol. J Gen Microbiol. 1993;139(9):1979–1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.