404
Views
6
CrossRef citations to date
0
Altmetric
Organic Chemistry

An anti-inflammatory isoflavone from soybean inoculated with a marine fungus Aspergillus terreus C23-3

, , , , , , , , & ORCID Icon show all
Pages 1546-1553 | Received 28 Jan 2020, Accepted 30 Apr 2020, Published online: 20 May 2020

References

  • Ko KP. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev. 2014;15(17):7001–7010.
  • Wang Q, Ge X, Tian X, et al. Soy isoflavone: the multipurpose phytochemical (Review). Biomed Rep. 2013;1(5):697–701.
  • Yu O, Jung W, Shi J, et al. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol. 2000;124(2):781–794.
  • Esaki H, Kawakishi S, Morimitsu Y, et al. New potent antioxidative o-dihydroxyisoflavones in fermented Japanese soybean products. Biosci Biotechnol Biochem. 1999;63(9):1637–1639.
  • Nakajima N, Nozaki N, Ishihara K, et al. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J Biosci Bioeng. 2005;100(6):685–687.
  • Hong SS, Choi YH, Lee JA, et al. Two new isoflavone glycosides from the extracts of the fungus Monascus pilosus-fermented black soybean. Bull Korean Chem Soc. 2014;45(18):3863–3866.
  • Huang Z, Yang J, She Z, et al. A new isoflavone from the mangrove endophytic fungus Fusarium sp. (ZZF60). Nat Prod Res. 2012;26(1):11–15.
  • Huang Z, Yang J, She Z, et al. Isoflavones from the mangrove endophytic fungus Fusarium sp. (ZZF41). Nat Prod Commun. 2010;5(11):1771–1773.
  • Chen YC, Sugiyama Y, Hirota A. Isolation of a new metabolite from biotransformation of daidzein by Aspergillus oryzae. Biosci Biotechnol Biochem. 2009;73(8):1877–1879.
  • Nong XH, Wang YF, Zhang XY, et al. Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus. Mar Drugs. 2014;12(12):6113–6124.
  • Zhang YY, Zhang Y, Yao YB, et al. Butyrolactone-I from coral-derived fungus Aspergillus terreus attenuates neuro-inflammatory response via suppression of NF-κB pathway in BV-2 cells. Mar Drugs. 2018;16(6):202.
  • Li HL, Li XM, Yang SQ, et al. Prenylated phenol and benzofuran derivatives from Aspergillus terreus EN-539, an endophytic fungus derived from marine red alga Laurencia okamurai. Mar Drugs. 2019;17(11):605.
  • Li HL, Li XM, Yang SQ, et al. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531. J Antibiot (Tokyo). 2020;73(2):108–111.
  • Yan FY, Xia W, Zhang XX, et al. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. J Zhejiang Univ Sci B. 2016;17(6):455–464.
  • Villa FA, Lieske K, Gerwick L. Selective MyD88-dependent pathway inhibition by the cyanobacterial natural product malyngamide F acetate. Eur J Pharmacol. 2010;629(1–3):140–146.
  • Choi H, Mascuch SJ, Villa FA, et al. Honaucins A-C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol. 2012;19(5):589–598.
  • Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126(1):131–138.
  • Yang WC, Bao HY, Liu YY, et al. Depsidone derivatives and a cyclopeptide produced by marine fungus Aspergillus unguis under chemical induction and by its plasma induced mutant. Molecules. 2018;23:2245–2259.
  • Suri JL, Gupta GK, Dhar KL, et al. Psoralenol: A new isoflavone from the seeds of Psoralea corylifolia. Phytochemistry. 1978;17(11):2046.
  • Ren J, Jiang J-X, Li L-B, et al. Assignment of the absolute configuration of concentricolide – absolute configuration determination of its bioactive analogs using DFT methods. Eur J Org Chem. 2009;2009:3987–3991.
  • Murthy MSR, Rao EV, Ward RS. Carbon-13 nuclear magnetic resonance spectra of isoflavones. Mag Res Chem. 1986;24(3):225–230.
  • Maskey R, Asolkar R, Speitling M, et al. Flavones and new isoflavone derivatives from microorganisms: isolation and structure elucidation. Zeitschrift fur Naturforschung B. 2003;58:686–691.
  • Kiriyama N, Nitta K, Sakaguchi Y. Studies on the metabolic products of Aspergillus terreus. III. metabolites of the stain IFO 8835. (1). Chem Pharm Bull. 1977;25:2593–2601.
  • González A, Guillermo J, Ravelo A, et al. 4,5-Dihydroblumenol A, a new nor-isoprenoid from Perrottetia multiflora. J Nat Prod. 1994;57(3):400–402.
  • Liu PP, Li YZ, Zhang QS. Studies of the chemical constituents of soybean isoflavone. Fine Chem. 2004;21(3):200–201.
  • Naeem MMM, El-Shazly HAM, Yousseria MS, et al. Production of antioxidant by fungi using soybean milk residue (okara). Int J Curr Microbiol Appl Sci. 2015;4(2):847–866.
  • Lee IH, Chou CC. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. J Agr Food Chem. 2006;54(4):1309–1314.
  • Bhakuni DS, Joshi PP, Uprety H, et al. Roseoside-A C13 glycoside from Vinca rosea. Phytochemistry. 1974;13(11):2541–2543.
  • Yasuda M, Irie K, Murakami A. Inhibition by genistein of the lipopolysaccharide-induced down-regulation of programmed cell death 4 in RAW 264.7 mouse macrophages. Biosci Biotechnol Biochem. 2010;74(5):1095–1097.
  • Tu YB, Xiao T, Gong GY, et al. A new isoflavone with anti-inflammatory effect from the seeds of Millettia pachycarpa. Nat Prod Res. 2019;1–7. DOI:10.1080/14786419.2018.1547294.
  • Hong H, Landauer MR, Foriska MA, et al. Antibacterial activity of the soy isoflavone genistein. J Basic Microbiol. 2006;46(4):329–335.
  • Dastidar SG, Manna A, Kumar KA, et al. Studies on the antibacterial potentiality of isoflavones. Int J Antimicrob Agents. 2004;23(1):99–102.
  • Krämer R, Hindorf H, Jha H, et al. Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochemistry. 1984;23:2203–2205.
  • Ratnaweera P, Walgama C, Jayasundera K, et al. Antibacterial activities of endophytic fungi isolated from six Sri Lankan plants of the family Cyperaceae. Bangl J Pharmacol. 2018;13:264–272.
  • Lu C, Wang Y, Xu T, et al. Genistein ameliorates scopolamine-induced amnesia in mice through the regulation of the cholinergic neurotransmission, antioxidant system and the ERK/CREB/BDNF signaling. Front Pharmacol. 2018;9:1153.
  • Zeng L, Gu Z, Fang X, et al. Kneglomeratanol, kneglomeratanones A and B, and related bioactive compounds from Knema glomerata. J Nat Prod. 1994;57:376–381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.