230
Views
9
CrossRef citations to date
0
Altmetric
Articles

Fabrication of mesenchymal stem cells-integrated vascular constructs mimicking multiple properties of the native blood vessels

, &
Pages 769-783 | Received 22 Apr 2012, Accepted 11 Jul 2012, Published online: 06 Aug 2012

References

  • Schechner , JS , Nath , AK , Zheng , L , Kluger , MS , Hughes , CCW , Sierra-Honigmannn , MR , Lorber , MI , Tellides , G , Kashgarian , M , Bothwell , LM and Pober , JS . 2000 . In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse . Proceedings of the National academy of Sciences of the United States of America , 97 : 9191
  • Watt , SM , Athanassopoulos , A , Harris , AL and Tsaknakis , G . 2010 . Human endothelial stem/progenitor cells, angiogenic factors and vascular repair . Journal of the Royal Society, Interface , 7 : S731
  • Yokota , T , Ichikawa , H , Matsumiya , G , Kuratani , T , Sakaguchi , T , Iwai , S , Shirakawa , Y , Torikai , K , Saito , A , Uchimura , E , Kawaguchi , N , Matsuura , N and Sawa , Y . 2008 . In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding . Journal of Thoracic and Cardiovascular Surgery , 136 : 900
  • Schaner , PJ , Martin , ND , Tulenko , TN , Shapiro , IM , Tarola , NA , Leichter , RF , Carabasi , RA and DiMuzio , PJ . 2004 . Decellularized vein as a potential scaffold for vascular tissue engineering . Journal of Vascular Surgery , 40 : 146
  • Ju , YM , Choi , JS , Atala , A , Yoo , JJ and Lee , SJ . 2010 . Bilayered scaffold for engineering cellularized blood vessels . Biomaterials , 31 : 4313
  • Hashi , CK , Zhu , Y , Yang , G-Y , Young , WL , Hsiao , BS , Wang , K , Chu , B and Li , S . 2007 . Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts . Proceedings of the National Academy of Sciences of the United States of America , 104 : 11915
  • Stankus , JJ , Soletti , L , Fujimoto , K , Hong , Y , Vorp , DA and Wagner , WR . 2007 . Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization . Biomaterials , 28 : 2738
  • Isenberg , BC , Williams , C and Tranquillo , RT . 2006 . Small-diameter artificial arteries engineered in vitro . Circulation Research , 98 : 25
  • Nerem , RM and Seliktar , D . 2001 . Vascular tissue engineering . Annual Review of Biomedical Engineering , 3 : 225
  • Steinman , DA , Vorp , DA and Ethier , CR . 2003 . Computational modeling of arterial biomechanics: insights into pathogenesis and treatment of vascular disease . Journal of Vascular Surgery , 37 : 1118
  • Lee , SJ , Liu , J , Oh , SH , Soker , S , Atala , A and Yoo , JJ . 2008 . Development of a composite vascular scaffolding system that withstands physiological vascular conditions . Biomaterials , 29 : 2891
  • Hong , Y , Huber , A , Takanari , K , Amoroso , NJ , Hashizume , R , Badylak , SF and Wagner , WR . 2011 . Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold . Biomaterials , 32 : 3387
  • Kerdjoudj , H , Moby , V , Berthelemy , N , Gentils , M , Boura , C , Bordenave , L , Stoltz , JF and Menu , P . 2007 . The ideal small arterial substitute: role of cell seeding and tissue engineering . Clin Hemorheol Microcirc Journal , 37 : 89
  • Sell , SA , McClure , MJ , Garg , K , Wolfe , PS and Bowlin , GL . 2009 . Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering . Advanced Drug Delivery Reviews , 61 : 1007
  • Waterhouse , A , Wise , SG , Ng , MKC and Weiss , AS . 2011 . Elastin as a nonthrombogenic biomaterial . Tissue Engineering Part B , 17 : 93
  • Lesman , A , Koffler , J , Atlas , R , Blinder , YJ , Kam , Z and Levenberg , S . 2011 . Engineering vessel-like networks within multicellular fibrin-based constructs . Biomaterials , 32 : 7856
  • Bahney , CS , Hsu , CW , Yoo , JU , West , JL and Johnstone , B . 2011 . A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells . FASEB Journal , 25 : 1486
  • Kim , IY , Seo , SJ , Moon , HS , Yoo , MK , Park , IY , Kim , BC and Cho , CS . 2008 . Chitosan and its derivatives for tissue engineering applications . Biotechnology Advances , 26 : 1
  • Webb , AR , Yang , J and Ameer , GA . 2004 . Biodegradable polyester elastomers in tissue engineering . Expert Opinion on Biological Therapy , 4 : 801
  • Wang , C , Cen , L , Yin , S , Liu , QH , Liu , W , Cao , YL and Cui , L . 2010 . A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells . Biomaterials , 31 : 621
  • Ma , HY , Hu , JA and Ma , PX . 2010 . Polymer scaffolds for small-diameter vascular tissue engineering . Advanced Functional Materials , 20 : 2833
  • McClure , MJ , Sell , SA , Simpson , DG , Walpoth , BH and Bowlin , GL . 2010 . A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study . Acta Biomaterialia , 6 : 2422
  • Ratcliffe , A . 2000 . Tissue engineering of vascular grafts . Matrix Biology , 19 : 353
  • Guan , JJ , Stankus , JJ and Wagner , WR . 2006 . Development of composite porous scaffolds based on collagen and biodegradable poly(ester urethane)urea . Cell Transplant , 15 : S17
  • Wang , F , Li , ZQ , Lannutti , JL , Wagner , WR and Guan , JJ . 2009 . Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering . Acta Biomaterialia , 5 : 2901
  • Wang , DA , Feng , LX , Ji , J , Sun , YH , Zheng , XX and Elisseeff , JH . 2003 . Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications . Journal of Biomedical Materials Research Part A , 65A : 498
  • Park , JH , Park , KD and Bae , YH . 1999 . PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study . Biomaterials , 20 : 943
  • Guan , JJ and Wagner , WR . 2005 . Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity . Biomacromolecules , 6 : 2833
  • Cohn , D , Lando , G , Sosnik , A , Garty , S and Levi , A . 2006 . PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers . Biomaterials , 27 : 1718
  • Guelcher , SA . 2008 . Biodegradable polyurethanes: Synthesis and applications in regenerative medicine . Tissue Engineering Part B , 14 : 3
  • Kielty , CM , Stephan , S , Sherratt , MJ , Williamson , M and Shuttleworth , CA . 2007 . Applying elastic fibre biology in vascular tissue engineering . Philosophical Transactions of the Royal Society of London Series B , 362 : 1293
  • Huang , NF and Li , S . 2011 . Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine . Annals of Biomedical Engineering , 39 : 1201
  • Whitesides , GM , Mathias , JP and Seto , CT . 1991 . Molecular self-assembly and nanochemistry - a chemical strategy for the synthesis of nanostructures . Science , 254 : 1312
  • Ryan , DM and Nilsson , BL . 2012 . Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering . Polymer Chemistry , 3 : 19
  • Jayaraman , K , Kotaki , M , Zhang , YZ , Mo , XM and Ramakrishna , S . 2004 . Recent advances in polymer nanofibers . Journal of Nanoscience and Nanotechnology , 4 : 52
  • Smith , LA , Liu , XH and Ma , PX . 2008 . Tissue engineering with nano-fibrous scaffolds . Soft Matter , 4 : 2144
  • Holzwarth , JM and Ma , PX . 2011 . 3D nanofibrous scaffolds for tissue engineering . Journal of Materials Chemistry , 21 : 10243
  • Sill , TJ and von Recum , HA . 2008 . Electro spinning: applications in drug delivery and tissue engineering . Biomaterials , 29 : 1989
  • Liang , D , Hsiao , BS and Chu , B . 2007 . Functional electrospun nanofibrous scaffolds for biomedical applications . Advanced Drug Delivery Reviews , 59 : 1392
  • Pham , QP , Sharma , U and Mikos , AG . 2006 . Electrospinning of polymeric nanofibers for tissue engineering applications: a review . Tissue Engineering , 12 : 1197
  • Bhardwaj , N and Kundu , SC . 2010 . Electrospinning: a fascinating fiber fabrication technique . Biotechnology Advances , 28 : 325
  • Courtney , T , Sacks , MS , Stankus , J , Guan , J and Wagner , WR . 2006 . Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy . Biomaterials , 27 : 3631
  • Guan , JJ , Wang , F , Li , ZQ , Chen , J , Guo , XL , Liao , J and Moldovan , NI . 2011 . The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics . Biomaterials , 32 : 5568
  • Naderi , H , Matin , MM and Bahrami , AR . 2011 . Critical issues in tissue engineering: Biomaterials, cell sources, angiogenesis, and drug delivery systems . Journal of Biomaterials Applications , 26 : 383
  • Zhang , P , Moudgill , N , Hager , E , Tarola , N , Dimatteo , C , McIlhenny , S , Tulenko , T and DiMuzio , PJ . 2011 . Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease . Stem Cells and Development. Development , 20 : 977
  • Kaushal , S , Amiel , GE , Guleserian , KJ , Shapira , OM , Perry , T , Sutherland , FW , Rabkin , E , Moran , AM , Schoen , FJ , Atala , A , Soker , S , Bischoff , J and Mayer , JE . 2001 . Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo . Nature Medicine , 7 : 1035
  • Masuda , H and Asahara , T . 2003 . Post-natal endothelial progenitor cells for neovascularization in tissue regeneration . Cardiovascular Research , 58 : 390
  • Phinney , DG and Prockop , DJ . 2007 . Mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair - Current views . Stem Cells , 25 : 2896
  • Pittenger , MF and Martin , BJ . 2004 . Mesenchymal stem cells and their potential as cardiac therapeutics . Circulation Research , 95 : 9
  • Cho , SW , Lim , SH , Kim , IK , Hong , YS , Kim , SS , Yoo , KJ , Park , HY , Jang , Y , Chang , BC , Choi , CY , Hwang , KC and Kim , BS . 2005 . Small-diameter blood vessels engineered with bone marrow-derived cells . Annals of Surgery , 241 : 506
  • Stankus , JJ , Guan , JJ , Fujimoto , K and Wagner , WR . 2006 . Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix . Biomaterials , 27 : 735
  • Nam , J , Huang , Y , Agarwal , S and Lannutti , J . 2007 . Improved cellular infiltration in electrospun fiber via engineered porosity . Tissue Engineering , 13 : 2249
  • Wang , YZ , Wang , BC , Wang , GX , Yin , TY and Yu , QS . 2009 . A novel method for preparing electrospun fibers with nano-/micro-scale porous structures . Polymer Bulletin , 63 : 259
  • Baker , BM , Gee , AO , Metter , RB , Nathan , AS , Marklein , RA , Burdick , JA and Mauck , RL . 2008 . The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers . Biomaterials , 29 : 2348
  • Townsend-Nicholson , A and Jayasinghe , SN . 2006 . Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds . Biomacromolecules , 7 : 3364
  • Drilling , S , Gaumer , J and Lannutti , J . 2009 . Fabrication of burst pressure competent vascular grafts via electrospinning: Effects of microstructure . Journal of Biomedical Materials Research Part A , 88A : 923
  • Hong , Y , Ye , SH , Nieponice , A , Soletti , L , Vorp , DA and Wagner , WR . 2009 . A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend . Biomaterials , 30 : 2457
  • Wang , F , Li , ZQ , Tamama , K , Sen , CK and Guan , JJ . 2009 . Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation . Biomacromolecules , 10 : 2609
  • Gong , ZD and Niklason , LE . 2008 . Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs) . FASEB Journal , 22 : 1635
  • Amoroso , NJ , D’Amore , A , Hong , Y , Wagner , WR and Sacks , MS . 2011 . Elastomeric electrospun polyurethane scaffolds: the interrelationship between fabrication conditions, fiber topology, and mechanical properties . Advanced Materials , 23 : 106
  • Pankajakshan , D and Agrawal , DK . 2010 . Scaffolds in tissue engineering of blood vessels . Canadian Journal of Physiology and Pharmacology , 88 : 855
  • Konig , G , McAllister , TN , Dusserre , N , Garrido , SA , Iyican , C , Marini , A , Fiorillo , A , Avila , H , Wystrychowski , W , Zagalski , K , Maruszewski , M , Jones , AL , Cierpka , L , de la Fuente , LM and L’Heureux , N . 2009 . Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery . Biomaterials , 30 : 1542
  • Engler , AJ , Sen , S , Sweeney , HL and Discher , DE . 2006 . Matrix elasticity directs stem cell lineage specification . Cell , 126 : 677
  • Place , ES , Evans , ND and Stevens , MM . 2009 . Complexity in biomaterials for tissue engineering . Nature Materials , 8 : 457
  • Holzapfel , GA , Sommer , G , Gasser , CT and Regitnig , P . 2005 . Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling . American Journal of Physiology Heart and Circulatory Physiology , 289 : H2048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.